Rework test 2 by Wednesday

$$
11 / 16
$$

Reactions occur. between e^{-}rich $+e^{-}$deficient aras of molecules or atoms

So arrows help us imagine how $e^{-1 /}$ might go from an e^{-}reck spot to form a bond with an e^{-}deficriot spot

Arrows start at a source of es's and point to where the electrons will go.
Arrows represent the imagined movement of $e^{-1} \mathrm{~s}$. They are not an attempt to show a literal path.
 brow cannot start thee Arrows start at lone-pair e- 's
 lone-pair $e^{-1 / s}$ make a new bond to the H^{+}

Arrows cannot start at an H atom

Arrows that make a bond point to between the atoms

Arrows that break a bond and point to an atom puts the $\mathrm{e}^{-1} \mathrm{~s}$ on the atom $\mathrm{H}-\stackrel{\rho}{\mathrm{Br}}$ the $e^{-1} s$ in this bond |are moving
onto the B_{s} atom

$$
H^{\oplus} \quad B_{r}{ }^{\ominus}
$$

$$
n
$$

Beginning the arrow here tells us that the e^{-}in the H to Cl bond are going somewhere Cl .

Beginning the arrow at the O atom tells us that a pair of lone-pair $e^{-\prime s}$ are going to make a bond.

Ending the arrow between the O and the H tells us that the $\mathrm{e}^{- \text {'s }}$ will be between the O and H ; thus, a bond.

Since the arrow ends on the Cl , the two electrons in the bond wind up as lone pair $\mathrm{e}^{->}$s.

$$
\mathrm{CH}_{3} \mathrm{OH}+\mathrm{HCl} \rightarrow \mathrm{CH}_{3} \stackrel{\oplus}{O_{+}}+\mathrm{Cl}_{2} \Theta \text { single step arechaurson }
$$

Arrow Pushing Summary: What does this arrow mean?

these, are the same result
are we losing a band? yes, the π bond is lost are we making a bond or moving $e^{-1} s$ to a single atom? we are making a bond
why zan't the arrow mean
 that a C to $S T$ bond is forming?

this band. The rest of the rolerale will stay in I piece

people often trig to break the O atom free

Arrow Pushing Practice: Interpreting arrows

(2) the σ bond is breaking
and the $e^{-i s}$ are going to the O atom

Arrow Pushing Practice: Interpreting arrows
ester hydrolysis
check net charge because it can't change neutral $=0$ charge

$$
\text { net charge }=-1+1=0
$$

are going... Someahere
so we are losing are of the
c to 0 bonds
lone-pair e^{-1} s are going to be used to make
a bond... to the
C at the bottom of the $c=0$

o atom goes from +1 to 0 - gained $e^{-} \ldots$ doest start arrow here

H aton goes from 0 to +1 - lost es bond from 0 to H "disappears" - good place to start an arrow beaune the $e^{-1} s$ in the bund have to go somewhere

Arrow Pushing Practice
use e^{-}in $C-I$ band to make

gluing the Br mare e^{-1} s would male it mare Θ !
I goes from 0 to -1 gains e^{-}- good place to end arrow
Br goes from -1 to 0 donates e^{-}- good place to start avow? yes
lost C to I band - the e^{-}in the C to I band are a good place to start an arrow
gained a Br to C band - need an arrow to port to between the Br $+C$
e^{-}un Br^{-}are used to mole a C to Br bond, and the the e^{-} in the C to I bond go to the I to make rom for the rec band

Thinking

C goes from O to +1 - loses e^{-}- start arrow at C ?
Br goes from 0 to -1 - gains e^{-}. end cerrow at Br?
C to $C d b$ becomes a sb -bond "disappers" - stat ara here?
new C to H b bond - bond "appear" - end arrow between $C+H$?
lost H to Br bond - bond "disappears "-start asiow hive?
Resat $e^{-1 / s}$ in the T bund reach out and bond to the H^{+}and in the the $e^{-1} s H$ to Br band become a ext of $l p e^{-}$on the Br and the C atom that lost the π bond becomes Φ

