Today
Next Class

Finish Class 28
Section 6.16
Sections 6.12 and 6.13
Regioselectivity, stereoselectivity, and
Chap 9
stereospecificity

Test on Chapters 5 and 6 on Friday, December 2.

$$
D={ }^{2} H
$$

The stereochemical outcome of H^{+}initiated Electrophilic Addition reactions
te Faces Section 6.13
added to the same face added to opposite tace
E Add via C+ intermediates occurs via syn and anti addition, so all possible stereoisomers form.

all possible

 stereorsomers form in C^{+} reactions

If the reaction forms enantiomers, a 50/50 mixture (also called a racemic mixture) is formed.
If the reaction forms diastereomers, an excess of one diastereomer will be formed, but predicting which one will be produced in excess is beyond the scope of this class. The energies of the transition states leading to each diastereomer would have to be determined.
spa hybridized C which means there's an empty, unheforidized orbital on the C^{+}

\longleftarrow this face... the top fave is blocked
$x^{\ominus} \longleftarrow x^{\ominus}$ must come
in from the opposite
face, in this rase, the bottom face

$+H^{\oplus}+x^{\ominus}$
Nelectrophile is
blocking front
face, so nuclegphile mast come in fran back face

$$
3^{\circ} \mathrm{C}^{+}>2^{\circ} x^{+} \gg 10 \mathrm{C}^{+}
$$

Reactions (predict major products)

ethand... strong aced? not a strong acid
$\mathrm{H}-\mathrm{Cl}$ is a strong or weak acid? Strong
strong acids act as eleatraphiles

syn 4 anti
Reactions (predict major products)
is this how we chiral centers?
draw tetraludral 2 atoms? can't have 3 in-ptann bonds on a tetrahedral

山

D
no effort
to show strecochemiral outcome
anti

Reactions (predict major products)

electrophile a nucleophile bond Section bond to opposite faces anti addition
 on a tetrahedral C atom

Be blocks one Face after initiating the reaction, blocks one Face
Ster initiating the reaction, $\left.\mathrm{H}_{2} \mathrm{O}\right)$ must bind to the otter face
so the $\operatorname{Mu}\left(\mathrm{H}_{2}\right)$
anti addition

This is the E Add step
Hydroboration-oxidation occurs by a syn addition
Section 6.13
syn

mechanism this molecule exists as 4 stevorsomers, but only 2 are drawn... only 2 are produced in this reaction.
the $s p^{2} B$ has a vacant p orbital one step mechanism means an that is what males the B B $三$ H must attach to the electrophile

Pd catalyzed addition of H_{2} occurs via syn addition

Reactions (predict major products)

A

B

C

C

D

