Sections 2.6-2.9
Sections 2.1, 2.3, 2.12
Acids and Bases

In aqueous solutions, the solution is considered acidic if the concentration of \mathbf{H}^{+}is greater than the concentration of $\mathbf{O H}^{-}$. At $25^{\circ} \mathrm{C}$, this occurs when the pH is less than 7 .

In every day language, we might say that the solution is an acid. More precisely, there is an acid in the solution that is causing the solution to be acidic.

We will call molecules or ions acids or bases based on how they react (or could do).

There are many molecules that can act as a base in some circumstances or an acid in other circumstances.

Arrhenius, Brønsted-Lowry, and Lewis

$$
\begin{aligned}
& \ell^{\text {acid because it made }} \\
& \left.\mathrm{HCl} \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{H}^{+} \mathrm{Laq}\right)+\mathrm{Cl}_{(\mathrm{aq})} \\
& \mathrm{NaOH} \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{Na}_{(\mathrm{aq})}^{+}+\mathrm{OH}_{(\mathrm{aq})}^{-}
\end{aligned}
$$

an Aschenius bare because it dissoziated

$$
\text { in } \mathrm{Na}^{+}+\mathrm{OHO}
$$

$$
\begin{aligned}
\mathrm{HCl} \longrightarrow & H^{\oplus}+\mathrm{Cl}^{\circ} \\
& \uparrow \\
& \text { donates/releases } \mathrm{H}^{+} \text {acid }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{HCl}_{(\mathrm{g})}+\mathrm{NH}_{3}(\mathrm{~g}) \longrightarrow \mathrm{NH}_{4} \mathrm{Cl}(\mathrm{~s}) \quad \mathrm{NH}_{4}^{+} \mathrm{Cl}^{-}
\end{aligned}
$$

accepts a proton

$$
{ }^{1} H^{+} e^{-}
$$

this is just a proton

Al^{3+} is an aced It is an e- pair acceptor

$$
\begin{aligned}
& +2++3 \\
& \text { metals }
\end{aligned}
$$

H^{+}can H^{+}donate $e^{-1} s$? MO , H^{+}has no e^{-1} s to donate H^{+}can only accept $e^{-1} s$
BH_{3}

room for 2 more

when I add a H^{+}to
 a base I Lewis Lewlsbare
acid conjugate acred of $\mathrm{H}_{2} \mathrm{O}$
[] conc in $\frac{\mathrm{mol}}{\mathrm{L}}$
K_{a} and pK_{a}

\uparrow	$H A(a q)$	$\longrightarrow H^{+}(a q)+A^{-}(a q)$
equilibrium constant	$H A(a q) \longrightarrow H^{+}(a q)+A^{-}(a q)$	
	$p K_{a}=-6$	

$$
\begin{array}{ll}
H A(a q) & \rightleftharpoons H^{+}(a q)+A^{-}(a q) \\
H A(a q) & H^{+}(a q)+A^{-}(a q) \\
p K_{a}=-6
\end{array} \quad \downarrow K_{a}=6
$$

$$
\begin{aligned}
K_{a}=\frac{\left[H^{+}\right]\left[A^{-}\right]}{[H A]} \Rightarrow p K_{a} & =p H+\log \frac{[H A]}{\left[A^{-}\right]} \text {or } \\
p^{k_{a}} & =p^{H}-\log \frac{\left[A^{-}\right]}{[H A]} \text { or } \\
p_{a} & =-\log \left[K_{a}\right] \\
& =-\log \left[10^{-c}\right]
\end{aligned} \quad p^{H}=p K_{a}+\log \frac{\left[A^{-}\right]}{[H A]} \text { or }
$$

Sections 2.6-2.9
How structure affects acidity and basicity

Finish acids and bases
Sections 3.1-3.3
Nomenclature of Alkanes and Cylcoalkanes

Organic lecture on Friday, September 30 is canceled.
Test on Chap 1 and 2 on October 7 is one week from Friday.
two opposite charges separated in space
create a dipole
(1) \odot
\longrightarrow The dipole moment quantifies how strong \leftrightarrow the charge separation ir USEPR

$$
\mathrm{H}-\mathrm{H}
$$

$$
H \longrightarrow C l \quad \delta=c^{+}=0
$$

$$
\overrightarrow{H-O}-H \Rightarrow \quad / \quad \stackrel{H}{H}
$$

no net molecular dipole
[] conc in $\frac{\mathrm{mol}}{\mathrm{L}}$
K_{a} and pK_{a}

\uparrow	$H A(a q)$	$\longrightarrow H^{+}(a q)+A^{-}(a q)$
equilibrium constant	$H A(a q) \longrightarrow H^{+}(a q)+A^{-}(a q)$	
	$p K_{a}=-6$	

$$
\begin{array}{ll}
H A(a q) & \rightleftharpoons H^{+}(a q)+A^{-}(a q) \\
H A(a q) & H^{+}(a q)+A^{-}(a q) \\
p K_{a}=-6
\end{array} \quad \downarrow K_{a}=6
$$

$$
\begin{aligned}
K_{a}=\frac{\left[H^{+}\right]\left[A^{-}\right]}{[H A]} \Rightarrow p K_{a} & =p H+\log \frac{[H A]}{\left[A^{-}\right]} \text {or } \\
p^{k_{a}} & =p^{H}-\log \frac{\left[A^{-}\right]}{[H A]} \text { or } \\
p_{a} & =-\log \left[K_{a}\right] \\
& =-\log \left[10^{-c}\right]
\end{aligned} \quad p^{H}=p K_{a}+\log \frac{\left[A^{-}\right]}{[H A]} \text { or }
$$

Same Shell More Positive Nucleus
weakest

$$
\mathrm{CH}_{4}
$$

$$
\mathrm{NH}_{3}
$$

$\mathrm{H}_{2} \mathrm{O}$
strongest HF

$$
\begin{aligned}
\mathrm{K}_{a} & =10^{-50} & K_{a} & =10 \\
\mathrm{pK}_{\mathrm{a}} \mathrm{c}^{\prime} \mathrm{C} & \mathrm{CH}_{4}, \sim 50 & \mathrm{NH}_{3}, \sim 36 & \mathrm{H}_{2} \mathrm{O}, 15.6
\end{aligned} \mathrm{HF}, 3.18
$$

Which is the acidic H^{+}in acetic acid $\left(\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)$?
the lower in Section 2.6

IE the cons base is, the easter it 5

a.k.a.

Which atom is better a supporting/stabilizing
which one is better at attracting $e^{-1} s ? ~ 0$? more neg. The Θ on O is more stable because e^{-}are near $a+8$ nucleus. Θ on C would be less stable The one that leaves the more/most stable base behind 'qu near a $6+$ nucleus

Stabilization of a Base or Conjugate Base Summary

Get electrons near a positive charge
e^{-}on conjugate base are stabilized by being attracted to a \oplus charge

Spread electrons out over a larger volume

concentrated
charge attractive

$$
\begin{aligned}
& 10,000 \neq
\end{aligned}
$$

diffuse charge

$$
\begin{aligned}
& \mathrm{F} \\
& \mathrm{~S}
\end{aligned}
$$

Five ways to stabilize the electrons on the conjugate base
Same Shell More Positive Nucleus these atoms that bear the Θ widest are all similar sizes

Five ways to stabilize the electrons on the conjugate base
Same Column Larger Valence Shell
strongest

$$
\begin{array}{llll}
\mathrm{HI} \rightarrow H^{\oplus} & I^{\ominus} & n=5 & e^{-} \text {are spread out } \\
& \text { in large } n=5
\end{array}
$$

when changing shells
$\mathrm{HCl} \longrightarrow \mathrm{H}^{\oplus} \quad \mathrm{Cl}{ }^{\ominus} \quad n=3 \quad$ the increasing size of the atom becomes
weakest
 the neg than the I oKa's HF, 3.18

Five ways to stabilize the electrons on the conjugate base

Resonance

phenol

cyclohexanol
pK_{a} 's cyclohexanol, 16.0

10^{-16}

phenol, 10.0 ethanol 16.0
acetic acid 4.74
10^{-10}
10^{-16}
$10^{-4.74}$

Wait, what, resonance?
It is a fix for valance bond theory to accommodate extended π systems seen in MO theory MO Theory matches reality

O to O bonds are the same length. and, surprisingly, the molecule is slightly polar

Electron delocalization using resonance contributors

To draw resonance contributors we switch the positions of the lp $e^{-1 / s}+$ the π bond
When there are lone-pair es's adjacent to a π bond or more than two p orbitals in a row, we must consider drawing resonance contributors to have a better understanding of the structure, properties, and reactivity of a molecule

Sections 2.6-2.9
How structure affects acidity and basicity

Sections 3.1-3.3
Nomenclature of Alkanes and Cylcoalkanes

Organic lecture on Friday, September 30 is canceled.
Test on Chap 1 and 2 on October 7 is one week from Friday. Please check email to join zoom session for practice questions.

Wait, what, resonance?
It is a fix for valance bond theory to accommodate extended π systems seen in MO theory MO Theory matches reality

O to O bonds are the same length. and, surprisingly, the molecule is slightly polar

Electron delocalization using resonance contributors

To draw resonance contributors we switch the positions of the lp $e^{-1 / s}+$ the π bond
When there are lone-pair es's adjacent to a π bond or more than two p orbitals in a row, we must consider drawing resonance contributors to have a better understanding of the structure, properties, and reactivity of a molecule

Five ways to stabilize the electrons on the conjugate base

Resonance

stabilized by an 8^{+}nucleus

O auclir
spreading out $e^{-1} s$ by resonance stabilizes them so it pKa's cyclohexanol, 16.0 phenol, 10.0 ethanol 16.0 acetic acid 4.74 is easier for $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}^{2}$ to release H^{+}

Five ways to stabilize the electrons on the conjugate base
Inductive Effect

4.76

3.75
(4)
e^{-}pushed toward
0 atoms...
higher E

2.87

(1)
e^{-1} are
stabilized
e^{-}are drawn away
from the 0 by the inductive effect
by spreading them out first dipole by making th L more induces a ($)$

$$
\overrightarrow{H-C l}
$$

second dipole but the effects drops of by the $3^{\text {cd }}$ band dichloroacetic, 1.25

Greater s character

strangest

3
$50 \% \quad 50 \% p$
more S line character gets $e^{-1} s$ clone to nucleus so eismore stable
$s p^{2}$

what is the hybridisation? 4 directions, $4 \mathrm{HO}^{\prime}$ s needed Cross $5 \times p_{x} \times p_{y}+p_{z}$
toget $4 s p^{3}$

Stabilization of a Base or Conjugate Base Summary

Get electrons near a positive charge
same row p-table more \oplus nucleus stabilizes $e^{-1} s$ increase s character of hybrid orbitals

Spread electrons out over a larger volume
increasing the size of the atom $n=3$ us $n=2$ spreading out e^{-}by e^{-}delocalization (resonance) use the inductive effect to move charge around in a molecule

Base Strength: Concentrated, High Energy Electrons... increased θ charge $\mathrm{NaOCH}_{3} \mathrm{NaOH} \mathrm{Na}^{+}+\stackrel{O-O}{\mathrm{O}} \mathrm{H}$

$$
\mathrm{NaSCH}_{3}
$$

$$
\mathrm{HOCH}_{3}
$$

$$
\mathrm{Na}_{a}^{+} \quad \Theta_{: \ddot{S}}-\mathrm{OH}_{3}
$$

$\mathrm{Na}^{+} \Theta_{: \ddot{O}} \ddot{\mathrm{~S}}-\mathrm{CH}_{3}$
bigger, e^{-}move stable

$\mathrm{H}_{3} \mathrm{C}-\mathrm{ONa}$

$$
\mathrm{H}_{3} \mathrm{C}-\mathrm{NH}_{2} \quad \mathrm{H}_{3} \mathrm{C}-\overline{\mathrm{N}}_{2}
$$

e^{-}here $\mathrm{see}+7$
which is lowe than +8 these $e^{-1} s$ are less stable

Base Strength: Concentrated, High Energy Electrons...

Base Strength: Concentrated, High Energy Electrons...
base From

an imidazole ring
asto $s p^{2}$ did I chose zn imidazole ring?side chain or the catalytically important amino acid histidine

e^{-}delocalization
increases e^{-} density on left hand N

Base Strength and Water Solubility

Practice: For each molecule, which proton is the most likely to be lost and for each pair, which is the stronger acid

more acidic

larger atom can support the negative charge better
 adjacent to Hond

$e^{-1} s$ on N will be in an $s p^{2}$ hybord instead of $s p^{3}$ and will be lower in E

