Today

Next Class

1

Sections 2.6 - 2.9 How structure affects acidity and basicity

Sections 2.1, 2.3, 2.12 Acids and Bases In aqueous solutions, the solution is considered **acidic** if the concentration of **H**⁺ is **greater than** the concentration of **OH**⁻. At 25 °C, this occurs when the pH is less than 7.

In every day language, we might say that the solution is an acid. More precisely, there is an **acid in the solution that is causing the solution to be acidic**.

We will call molecules or ions acids or bases based on how they react (or could do).

There are **many molecules** that can **act as a base** in some circumstances **or an acid** in other circumstances. Arrhenius, Brønsted-Lowry, and Lewis

Section 2.1, 2.3, 2.12

HCL HZO HGq) + CIGq)

NoOH <u>Hz</u> Notage + OH coge Ma Archenius base because it dissoziated in Nat + OH

HCI ~> H# CIO M donates/releases H+ acid

NHy CI $H(C|_{(q)} + NH_{3}(q) \longrightarrow NH_{4}(C|_{(s)})$ $H - NH_3$

2H+ e-³ H⁺ e⁻

Arrhenius, Brønsted-Lowry, and Lewis

H B-H H Get's in B's valence shell room for 2 more BH_3 when I add H⁺ : H⁺ Lewis conjugate acro of HzO

K_a and pK_a [] conc in
$$\frac{mal}{L}$$

HA(aq) \implies H⁺(aq) + A⁻(aq)
equilibrium
constant
K = , $\frac{[products]}{[seactants]}$ $\frac{reaction}{[seactants]}$ K = $\frac{1000000}{1}$ $\frac{reaction}{[source]}$ K = $\frac{1}{1000000}$ $\frac{reaction}{[stays]}$ K = $\frac{1}{1000000}$

$$k_{a} = \frac{[H^{+}][A^{-}]}{[HA]} \implies pk_{a} = pH + \log \frac{[HA]}{[A^{-}]} \text{ or } pk_{a} = pH - \log \frac{[HA]}{[HA]} \text{ or } pk_{a} = -\log [Ka] = -\log [Ka] pH = pk_{a} + \log \frac{(A^{-}]}{[HA]} \text{ or } pH = pk_{a} + \log \frac{(A^{-}]}{[HA]}$$

$$pK_{a} \text{ is backwards}$$

Today

Sections 2.6 - 2.9 How structure affects acidity and basicity

Finish acids and bases

Sections 3.1-3.3 Nomenclature of Alkanes and Cylcoalkanes

Organic lecture on Friday, September 30 is canceled.

Test on Chap 1 and 2 on October 7 is one week from Friday.

l'two opposite charges separated in space create a dipole The dipole moment quantifies how strong the charge reparation is USEPR H-CI $\delta = c = 0$ H-O-H = i $\mu = i$ No net notecular divole H - H

K_a and pK_a [] conc in
$$\frac{mal}{L}$$

HA(aq) \implies H⁺(aq) + A⁻(aq)
equilibrium
constant
K = , $\frac{[products]}{[seactants]}$ $\frac{reaction}{[seactants]}$ K = $\frac{1000000}{1}$ $\frac{reaction}{[source]}$ K = $\frac{1}{1000000}$ $\frac{reaction}{[stays]}$ K = $\frac{1}{1000000}$

$$k_{a} = \frac{[H^{+}][A^{-}]}{[HA]} \implies pk_{a} = pH + \log \frac{[HA]}{[A^{-}]} \text{ or } pk_{a} = pH - \log \frac{[HA]}{[HA]} \text{ or } pk_{a} = -\log [Ka] = -\log [Ka] pH = pk_{a} + \log \frac{(A^{-}]}{[HA]} \text{ or } pH = pk_{a} + \log \frac{(A^{-}]}{[HA]}$$

$$pK_{a} \text{ is backwards}$$

Stabilization of a Base or Conjugate Base Summary

Get electrons near a positive charge

e on conjugate base are stabilized by being attracted to a \$ charge

Spread electrons out over a larger volume

100 concentrated Elrarge attractive

10,000¢ diffure charge

Five ways to stabilize the electrons on the conjugate base

Section 2.6 – 2.9

pKa's CH₄, ~50 NH₃, ~36 H₂O, 15.6 HF, 3.18

Same Column Larger Valence Shell

strongest

$$HI \rightarrow H^{\oplus} I^{\oplus} n=5$$
 e are spread out
in large $n=5$
 $orbital$
 $HBr \rightarrow H^{\oplus} Br^{\oplus} n=4$
 $HBr \rightarrow H^{\oplus} Cr^{\oplus} n=3$
 $HCI \rightarrow H^{\oplus} Cr^{\oplus} n=3$
 $HF \Rightarrow H^{\oplus} F^{\oplus} n=2$
 $HF \Rightarrow H^{\oplus} F^{\oplus} n=2$
 $HF = ncreasing Size$
 $oF fhe aton becomes$
 $HF = H^{\oplus} F^{\oplus} n=2$
 $He enco
 $He enco$
 $HF = H^{\oplus} F^{\oplus} H^{+} I$
 $F^{\oplus} H^{+} I$
 $F^{\oplus} H^{+} I$
 $F^{\oplus} H^{+} I$
 $F^{\oplus} H^{+} I$$

Five ways to stabilize the electrons on the conjugate base

Wait, what, resonance?

It is a fix for valance bond theory to accommodate extended π systems seen in MO theory

MO Theory matches reality

0 to 0 bonds are the same length, and, surprisingly, the molecule is slightly polar

Electron delocalization using resonance contributors

When there are lone-pair e^{-'s} adjacent to a π bond or more than two p orbitals in a row, we must consider drawing resonance contributors to have a better understanding of the structure, properties, and reactivity of a molecule

pKa's cyclohexanol, 16.0

phenol, 10.0

ethanol 16.0

acetic acid 4.74

pKa's cyclohexanol, 16.0

phenol, 10.0

ethanol 16.0

acetic acid 4.74

Today

Next Class

Sections 2.6 - 2.9 How structure affects acidity and basicity Sections 3.1-3.3 Nomenclature of Alkanes and Cylcoalkanes

Organic lecture on Friday, September 30 is canceled.

Test on Chap 1 and 2 on October 7 is one week from Friday.

Please check email to join zoom session for practice questions.

Wait, what, resonance?

It is a fix for valance bond theory to accommodate extended π systems seen in MO theory

MO Theory matches reality

0 to 0 bonds are the same length, and, surprisingly, the molecule is slightly polar

Electron delocalization using resonance contributors

When there are lone-pair e^{-'s} adjacent to a π bond or more than two p orbitals in a row, we must consider drawing resonance contributors to have a better understanding of the structure, properties, and reactivity of a molecule

Inductive Effect

€ H

H

.0

weakest

5 P 25% 75%

approximate pK_a 's ethane (C_2H_6) 50, ethene (C_2H_4) 44, ethyne (C_2H_2) 25

Stabilization of a Base or Conjugate Base Summary

Get electrons near a positive charge

Spread electrons out over a larger volume

Base Strength: Concentrated, High Energy Electrons...
NaOCH₃
NaOCH₃
NaOCH₃
Na⁺
$$\textcircled{O}: \bigcup_{i=}^{i} - CH_3$$

NaSCH₃
Na⁺ $\textcircled{O}: \bigcup_{i=}^{i} - CH_3$
Na⁺ $\textcircled{O}: \bigcup_{i=}^{i} - CH_3$
Na⁺ $\textcircled{O}: \bigcup_{i=}^{i} - CH_3$
HOCH₃
HOCH₃
H- $\dddot{O}-CH_3$
H- $\dddot{O}-H$
H₃C— $\dddot{O}H$
H- $\textcircled{O}-H$
H₃C— ONa
H₃C— ONa
H₃C— ONa
H₃C— NH_2
H₃C
H₃C— NH_2
H₃C

Base Strength: Concentrated, High Energy Electrons...

Θ H₃C-H₃C-E e concentrated e spread out over 20's 0 1 0 \sqrt{s}

Base Strength: Concentrated, High Energy Electrons...

Base Strength and Water Solubility

Practice: For each molecule, which proton is the most likely to be lost and for each pair, which is the stronger acid

More acidic

larger a tom) can support the negative charge better OH

et's on N will be in an sp² hybrid instead of sp³ and will be lower in E