(12) Today

Sections 2.4-2.6
Electron Delocalization
Bring Modeling Kits
Sections 2.7-2.11
Acids and Bases
(14) Second Class from Today

Test 1
Chap 1 and Chap 2.1-2.6

Next Class (13)
Sections 2.4-2.6
Resonance/Electron Delocalization
Bring Modeling Kits
Sections 2.7-2.11
Acids and Bases

Third Class from Today (15)
Sections 2.7-2.11
Acids and Bases
Section 2.12
Noncovalent Interactions Between Molecules

Review session on Thursday at 7:30 pm in Wilson 304

Whenever 3 or more p orbitals are in a row, experiments and MO theory say that the electrons are delocalized over all of the p orbitals.

This is a reactive intermediate... the Z is \mathcal{B} and has only $G V e^{-1}$, there are 3σ bands need $3 \mathrm{HO}_{s}$

$$
2 s \times 2 p \times 2 p
$$

SP ${ }^{2}$ hybridization
 ane unluybridized p orbital + it is empty
 the average equal importance in understanding our undecule

Rules for drawing Resonance Contributors

1. atoms don't move, only electrons
2. don't move $\boldsymbol{\sigma}$ bonds, only π bonds, lone pair e-'s, or unpaired e-'s (radicals)
3. the total number of electrons must stay the same, don't change the net charge
4. p orbitals must be able to line up parallel to each other
any contributor
with 3 issues
dues not help us understand she molecule so dort draw it

charge reparation
θ charge on an O
so this contributors
with 2 -issues is
highs in E than the other one and this sesanance hybrid therefor, the molecule more strongly resembles the contributor that is lower is E

Rules for drawing Resonance Contributors

1. atoms don't move, only electrons
2. don't move $\boldsymbol{\sigma}$ bonds, only π bonds, lone pair e-'s, or unpaired e-'s (radicals)
3. the total number of electrons must stay the same, don't change the net charge
4. p orbitals must be able to line up parallel to each other

\uparrow

without drawing dots how do I show that the C has a set of lone-par ells? write the formal chage

Rules for drawing Resonance Contributors

1. atoms don't move, only electrons
2. don't move $\boldsymbol{\sigma}$ bonds, only π bonds, lone pair e-'s, or unpaired e-'s (radicals)
3. the total number of electrons must stay the same, don't change the net charge
4. p orbitals must be able to line up parallel to each other

a θ on O is lower in E than a θ on C

