(24) Today

Sections 4.3-4.8 Stability of Cycloalkanes and Conformations of Cyclohexanes

Sections 5.1-5.5
Chirality and Determining the Configuration of Chiral Centers
(26) Second Class from Today

Sections 5.6-5.12
Diastereomers, N,P, and S, and Prochirality
Chap 6

Next Class (25)
Sections 5.1-5.5
Chirality and Determining the Configuration
of Chiral Centers
Sections 5.6-5.12
Diastereomers, N,P, and S, and Prochirality

Third Class from Today (27)
Chap 6

CIs arrangement of CH_{3}
 change
cis arrangement
when the ring flips all axial positions + equatorial positions

different conformations of the some molecule have different energy levels based on the degree of $e^{-}-e^{-}$repulsion experienced by the substituent
axial positions are the most crowded
$e^{-}-e^{-}$repulsion from other axial positions
$e^{-}-e^{-}$repulsion From gauche interactions with sing CH_{2} 's the larger the substituent, the higher the E $\mathrm{https}: / / \mathrm{www}$. westrield.ma.edu/cmasi/organic/cyclohexanes/subb_cyclohexanes-plain.html

$\alpha-1,4$ linkage

$\beta-1,4$ linkage

Drawing Conformations of Substituted Cyclohexanes
Section 4.3-4.8

Chirality

Look down

Abstract

At your feet....

Correct shoe on the correct foot?
Yes? You've mastered chirality!

Chirality: Chemistry for Handedness

righty and lefty golf clubs

no such thing as righty and lefty safety goggles

right and left roller skates
no such thing as righty and lefty baseball bats

righty and lefty scissors?

You bet! Most scissors are designed for right-handed use and don't work as well in the left hand.

