










$$\longrightarrow$$
 Br base $\stackrel{\Theta}{\longrightarrow}$  base:H Br $\stackrel{\Theta}{\longrightarrow}$ 

#### Overview

Nucleophilic Substitution and Mechanisms of Nucleophilic substitution: predict products and draw mechanisms

Factors affecting nucleophilic substitution: describe and explain

Competition between S<sub>N</sub>1 and S<sub>N</sub>2 Mechanisms: predict likely predominant mechanism

Alcohols as Substrates in Substitution Reactions: predict products and describe reactions

Elimination Reactions and Mechanisms of Elimination Reactions

Factors affecting elimination reactions

Competition between E1 and E2 Mechanisms

Alcohols as Substrates in Elimination Reactions

Competition between Substitution and Elimination Reactions

α-Carbon

Nucleophile

**Leaving Group** 

# Nucleophilic Substitution Reactions in Biology

#### news and views

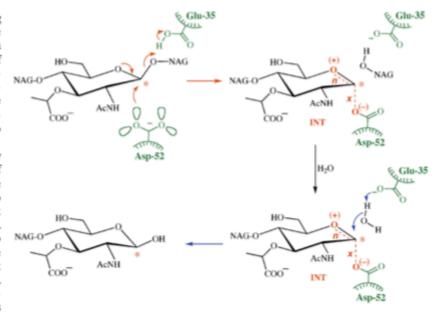
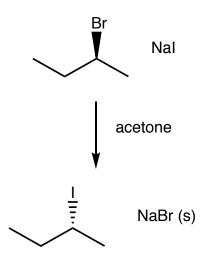
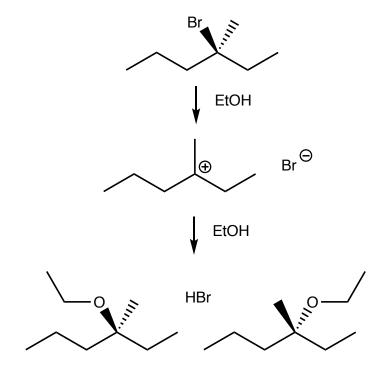
# The lysozyme mechanism sorted — after 50 years

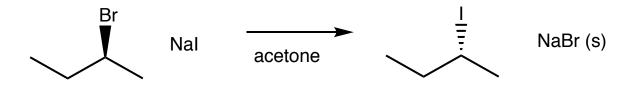
Anthony J Kirby

Unambiguous evidence for a glycosyl-enzyme intermediate on the lysozyme reaction pathway has recently been reported, finally settling what kind of mechanism this textbook enzyme uses.

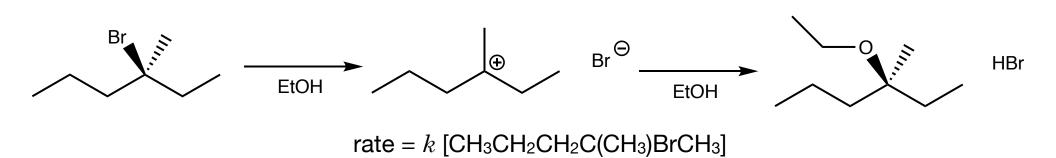
The publication in 19651 of the hen egg white lysozyme crystal structure - the first such structure of any enzyme - was a major landmark, offering the prospect of detailed explanations of enzyme mechanisms at the molecular level. Such mechanisms involve some of the most subtle relationships between structure and function in all of biology, as enzymes have to recognize and thus stabilize transition states, which probably exist for only femtoseconds. Because the structure of lysozyme was a first, and because of the coherent messages the structure seemed to provide, lysozyme has been a textbook example of enzyme mechanism ever since. Now, in a recent issue of Nature, Vocadlo et al.2 report new evidence about the mechanism of lysozyme, information that has been sought after for almost 50 years.

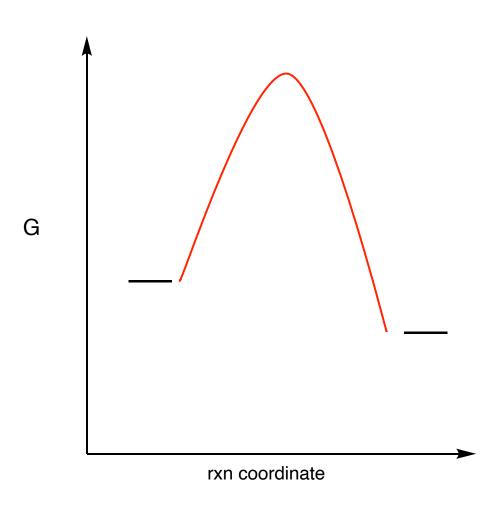
Lysozyme is the most prominent member of the very large class of glycosidases or glycohydrolases, enzymes that catalyze the transfer of a glycosyl group to water. In vivo lysozyme catalyzes the hydrolysis of a polysaccharide component of the cell wall of Gram-positive bacteria. To do this it accelerates enormously the extraordi-

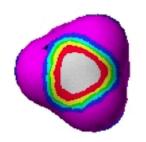




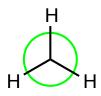


Fig. 1 The reaction catalyzed by lysozyme. The substrate is bound so that the leaving group oxygen, the 4-OH group of an N-acetyl glucosamine (NAG) residue, is protonated as it leaves by the COOH group of Gu 35. Groups on the enzyme are colored green, electron movements and the key developing bonds and charges in red. Only one of the dashed exo and endo (x and n) bonds of the intermediate (INT) is actually present: which one defines the mechanism. Thus n is missing in mechanism (i), x in mechanism (ii).

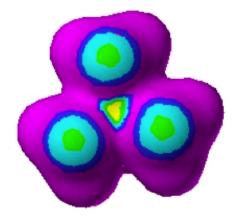
# Evidence for $S_N2$ and $S_N1$

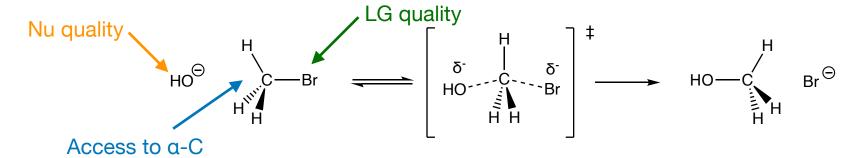

# Section 11.2 and 11.4

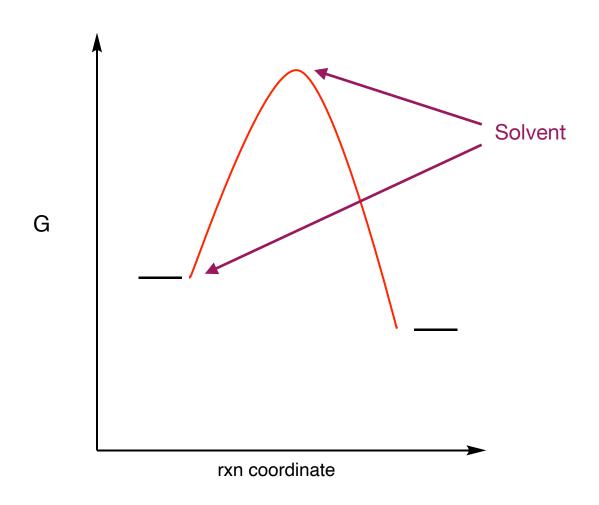




rate = k [CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>Br][I-]

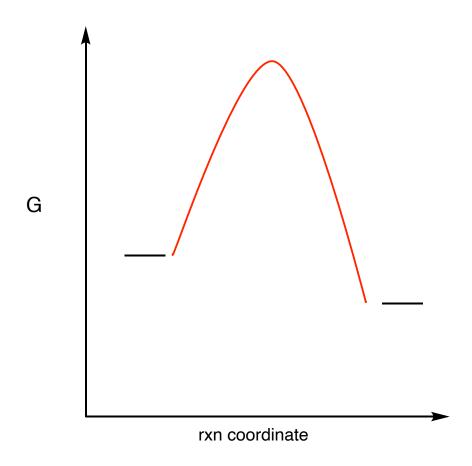











# Factors Affecting S<sub>N</sub>2 Reactions: Nucleophile Quality

#### Section 11.2 and 11.3

rate = k [CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>Br][Nu<sup>-</sup>]



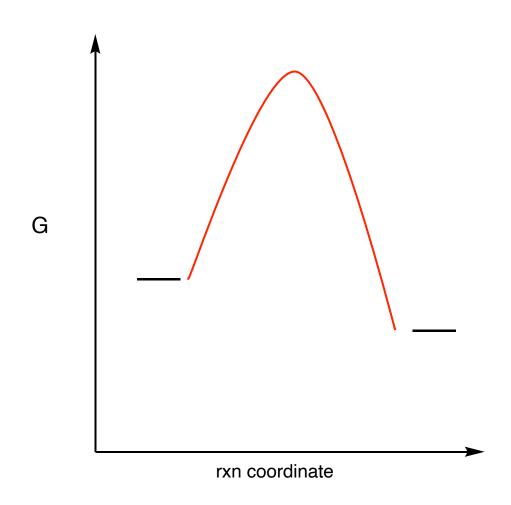
Nu: + CH<sub>3</sub>Br → CH<sub>3</sub>Nu + Br

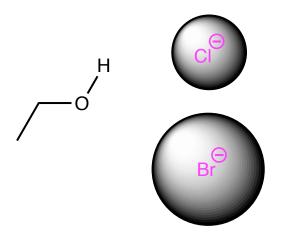
| Nucleophile                     |              | Product                                         |                     | Deleties and a formation  |
|---------------------------------|--------------|-------------------------------------------------|---------------------|---------------------------|
| Formula                         | Name         | Formula                                         | Name                | Relative rate of reaction |
| H <sub>2</sub> O                | Water        | CH <sub>3</sub> OH <sub>2</sub> <sup>+</sup>    | Methylhydronium ion | 1                         |
| CH <sub>3</sub> CO <sub>2</sub> | Acetate      | CH <sub>3</sub> CO <sub>2</sub> CH <sub>3</sub> | Methyl acetate      | 500                       |
| NH <sub>3</sub>                 | Ammonia      | CH <sub>3</sub> NH <sub>3</sub> <sup>+</sup>    | Methylammonium ion  | 700                       |
| Cl <sup>-</sup>                 | Chloride     | CH <sub>3</sub> Cl                              | Chloromethane       | 1,000                     |
| H0 <sup>-</sup>                 | Hydroxide    | CH <sub>3</sub> OH                              | Methanol            | 10,000                    |
| CH <sub>3</sub> O <sup>-</sup>  | Methoxide    | CH <sub>3</sub> OCH <sub>3</sub>                | Dimethyl ether      | 25,000                    |
| I_                              | Iodide       | CH <sub>3</sub> I                               | Iodomethane         | 100,000                   |
| <sup>-</sup> CN                 | Cyanide      | CH <sub>3</sub> CN                              | Acetonitrile        | 125,000                   |
| HS <sup>-</sup>                 | Hydrosulfide | CH <sub>3</sub> SH                              | Methanethiol        | 125,000                   |

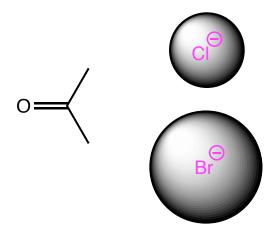
Organic Chemistry, a Tenth Edition. McMurry, OpenStax.

### Factors Affecting S<sub>N</sub>2 Reactions: The Leaving Group

#### Section 11.3


Relative reaction rates from Bruice, McMurry


I-: Br-: CI-: F-


30,000 : 10,000 : 200 : 1

## Factors Affecting S<sub>N</sub>2 Reactions: Solvent

#### Section 11.3





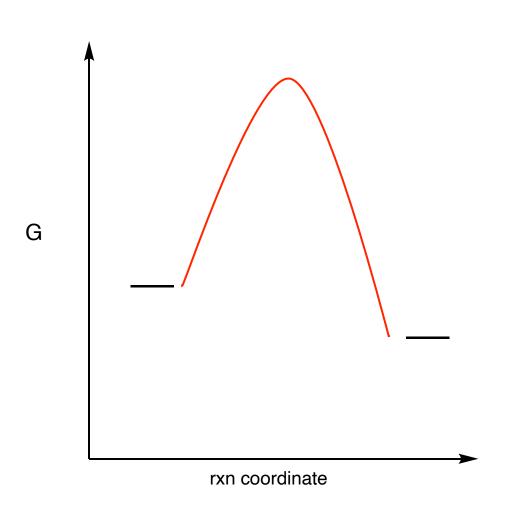


$$H-C\equiv CNa$$

 $CH_3CH_2OH$ 

$$CH_3CH_2OCH_2CH_3\\$$

$$\begin{array}{c}
O \\
\parallel \\
C \\
N
\end{array}$$


$$CH_3$$

$$CH_3$$

# Factors Affecting S<sub>N</sub>2 Reactions: Solvent

## Section 11.3

$$HO^{\bigcirc} \qquad HO^{\bigcirc} \qquad H$$



Factors Affecting S<sub>N</sub>2 Reactions

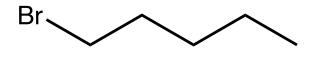
Section 11.3

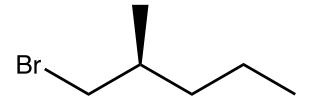
Low degree of substitution on  $\alpha$ -C and  $\beta$ -C atoms

Nu needs to be able to get to the  $\alpha$ -C to react

#### **Aprotic Solvents**

Protic solvents weaken Nu's (stabilize Nu's via H-bonding like interaction) Aprotic solvents increase the reactivity of nucleophiles

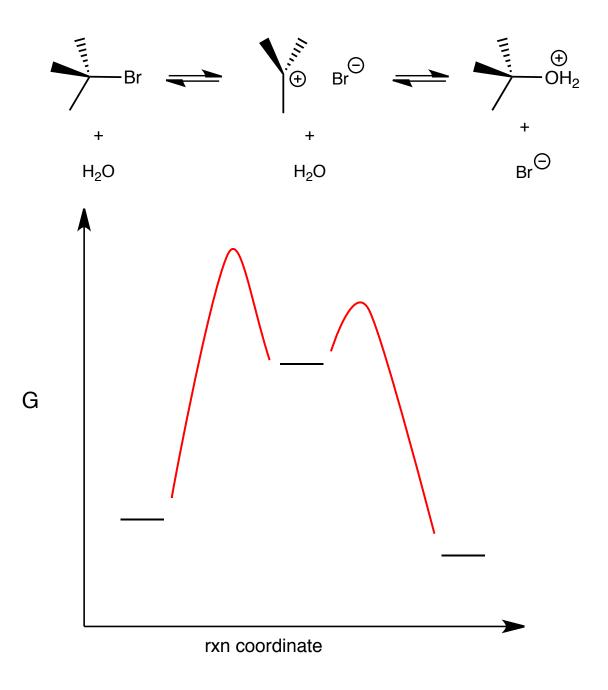

#### Good Leaving Group

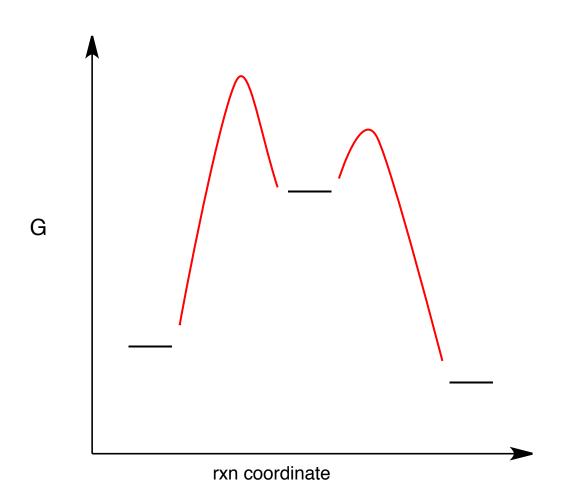

The more weakly basic the LG is, the easier it is for it to leave

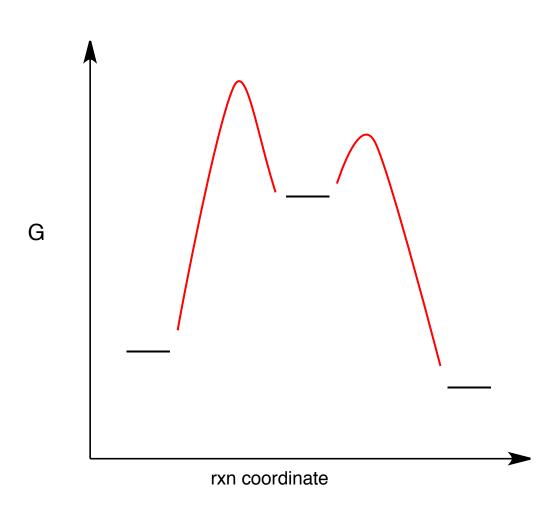
#### **Good Nucleophiles**

e- rich, polarizable Nu's are best at initiating S<sub>N</sub>2 reactions

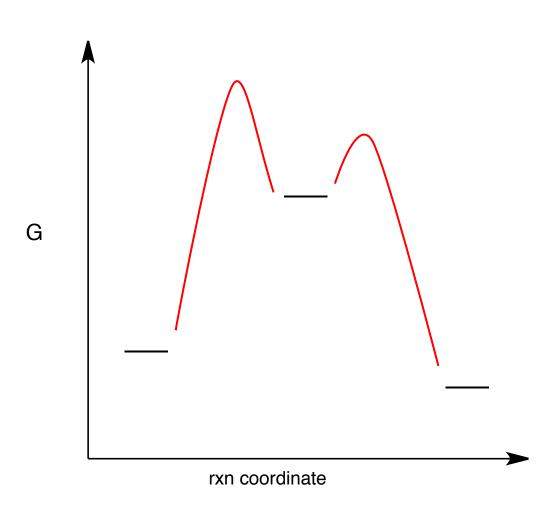
# $\alpha\text{-}C$ and $\beta\text{-}C$





#### Relative Reaction Rate<sup>1</sup>

$$H_3C$$
  $\to$   $H_3C$   $\to$   $H_3C$   $\to$   $H_3C$   $\to$   $H_3C$   $\to$   $H_3C$   $\to$   $H_3C$ 


$$H_3C$$
 $H_3C$ 
 $H_3C$ 







$$\begin{bmatrix} \vdots \\ Br \end{bmatrix}^{\ddagger} \xrightarrow{Br} \begin{bmatrix} Br \end{bmatrix}^{\ddagger} \xrightarrow{Br} \begin{bmatrix} Br \end{bmatrix}^{\ddagger} \xrightarrow{Br} \begin{bmatrix} Br \end{bmatrix}^{\ddagger} \xrightarrow{Br} \begin{bmatrix} Br \end{bmatrix}^{\ddagger} \xrightarrow{Br} \begin{bmatrix}$$



High degree of substitution on α-C or electron delocalization to promote C+ stability

1° C < 2° α-C ~ 1° allylic ~ 1° benzylic < 3° α-C ~ 2° allylic ~ 2° benzylic < 3° allylic ~ 3° benzylic

Protic Solvents - encourage S<sub>N</sub>1 mechanisms

Help stabilize transition state by stabilizing (–) charge that builds on LG as α-C to LG bond breaks

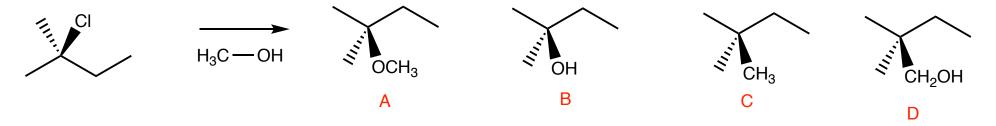
#### Good Leaving Group

LG's that are low in energy (very weakly basic atoms/molecules) make forming the C+ intermediate easier

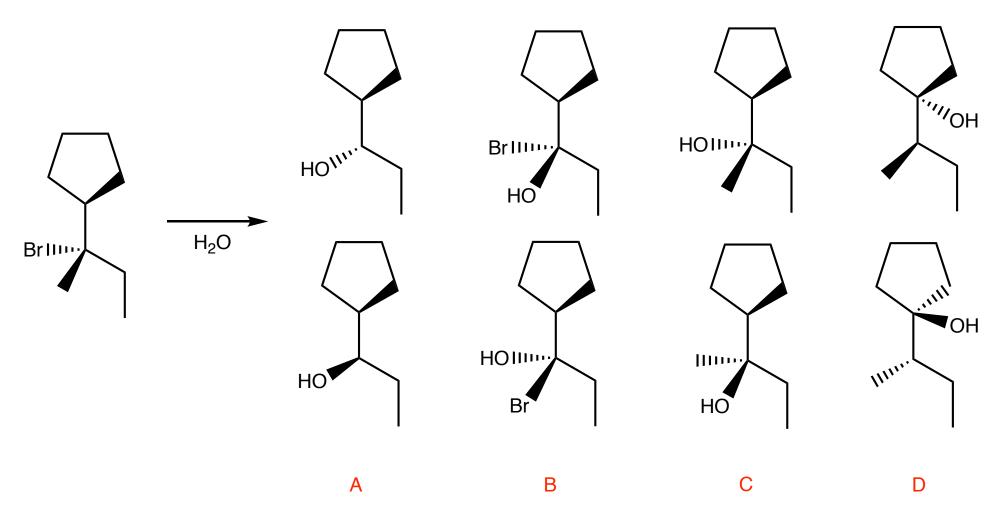
#### Weak Nucleophiles

Weak Nu's have to wait for C+ to form to react...

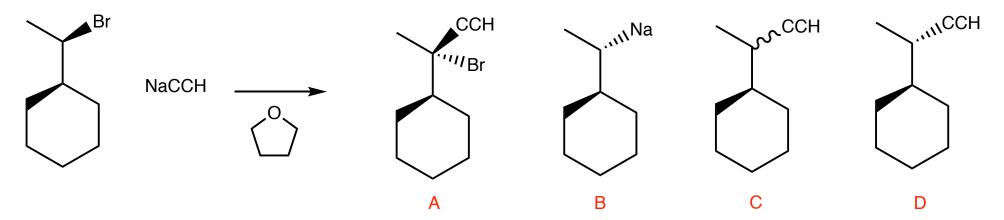
Strongly basic Nu's cause side reactions on 2° and 3° α-C's

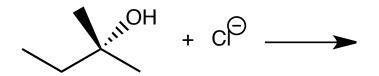

# Allylic and Benzylic Positions

| S <sub>N</sub> 2                               | S <sub>N</sub> 1                                                             |  |
|------------------------------------------------|------------------------------------------------------------------------------|--|
| Two molecules collide in a 1 step mechanism    | Dissociation of <b>one molecule</b> controls the rate of a two step reaction |  |
| bimolecular rate determining step              | unimolecular rate determining step                                           |  |
| stereochemistry is inverted                    | stereochemistry is a mixture of inverted and retained (not inverted)         |  |
| methyl, 1°, 2°                                 | 3° alkyl 2° allylic/benzylic substrates                                      |  |
| better the nucleophile the faster the reaction | the nucleophile is not involved in the rate determining step                 |  |
| good nucleophile                               | so so nucleophile                                                            |  |
| polar aprotic solvent                          | polar protic solvent                                                         |  |


# Reactions: $S_N2$ (ignoring stereochemistry)

$$A$$
 $Br$ 
 $NaSCH_3$ 
 $A$ 
 $Br$ 
 $C$ 
 $CH_3$ 
 $C$ 
 $D$ 
 $A$ 
 $B$ 
 $C$ 
 $D$ 


# Reactions: $S_N1$ (not ignoring stereochemistry)




# Reactions: $S_N$ ? (not ignoring stereochemistry)



# Reactions: $S_N$ ? (not ignoring stereochemistry)





# Why consider substitution reactions with alcohols?

## Biochemical Conversion of a Bad Hydroxyl Leaving Group to a Good Phosphate Leaving Group

+ HCI 
$$+$$
 H<sub>2</sub>O + H<sub>2</sub>O

$$OH + HBr \longrightarrow H_2O$$

OH + 
$$\frac{\text{HCI}}{\text{HBr}}$$
  $\frac{\text{CI}}{\text{H}_2\text{O}}$  +  $\frac{\text{H}_2\text{O}}{\text{Br}}$ 

| 1-butanol reaction                   |                                     |      |      | t-butanol reaction                  |                                    |      |      |
|--------------------------------------|-------------------------------------|------|------|-------------------------------------|------------------------------------|------|------|
| area under<br>1-chlorobutane<br>peak | area under<br>1-bromobutane<br>peak | % CI | % Br | area under t-butyl<br>chloride peak | area under t-butyl<br>bromide peak | % CI | % Br |
| 3.0184                               | 39.1592                             | 7.2  | 92.8 | 30.7310                             | 89.2060                            | 25.6 | 74.4 |
| 5.8862                               | 91.6926                             | 6.0  | 94.0 | 19.1382                             | 61.8448                            | 23.6 | 76.4 |
| 1.3768                               | 21.3868                             | 6.0  | 94.0 | 18.6189                             | 41.2592                            | 31.1 | 68.9 |
| 1.4171                               | 19.5425                             | 6.8  | 93.2 | 37.4692                             | 81.1158                            | 31.6 | 68.4 |

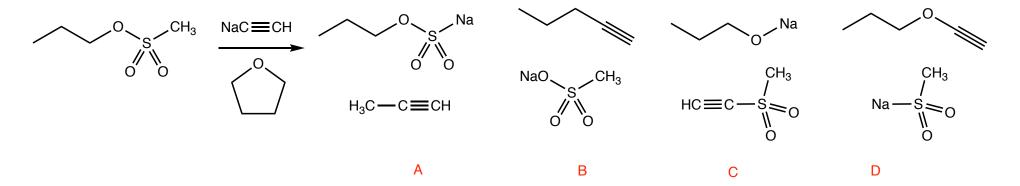
Other ways to convert OH- to a good leaving group and do substitution using Lewis Acidic Atoms/Molecules

**Sections 10.5 and 17.6** 

$$\bigcirc OH + \bigcirc S \bigcirc OH + \bigcirc OH \bigcirc OH$$

$$ether \bigcirc OH \bigcirc OH$$

OH + 
$$X \nearrow X$$
 ether  $X = CI \text{ or Br}$ 


|                                        | p-toluenesulfonylchloride                                                                          | methanesulfonyl chloride | trifluoromethanesulfonyl chloride  O II F <sub>3</sub> C — S — CI II O |  |
|----------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------|------------------------------------------------------------------------|--|
|                                        | $H_3C$ $\longrightarrow$ $\begin{bmatrix} 0 \\    \\    \\ 0 \end{bmatrix}$ $\longrightarrow$ $CI$ | H <sub>3</sub> C—S—CI    |                                                                        |  |
| p-toluenesulfonate<br>a.k.a. toscylate |                                                                                                    | methanesulfonate         | trifluoromethanesulfonate a.k.a. triflate                              |  |

# Reactions

### Reactions

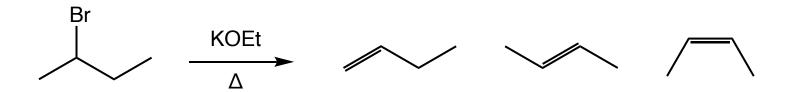
OH 
$$\stackrel{SOCl_2}{\longrightarrow}$$
  $\stackrel{SOCl_2}{\longrightarrow}$   $\stackrel{SOCI}{\longrightarrow}$   $\stackrel{SOCI}{\longrightarrow}$   $\stackrel{CI}{\longrightarrow}$   $\stackrel{CI}{\longrightarrow}$   $\stackrel{CI}{\longrightarrow}$   $\stackrel{CI}{\longrightarrow}$   $\stackrel{OH}{\longrightarrow}$   $\stackrel{CI}{\longrightarrow}$   $\stackrel{CI}$ 

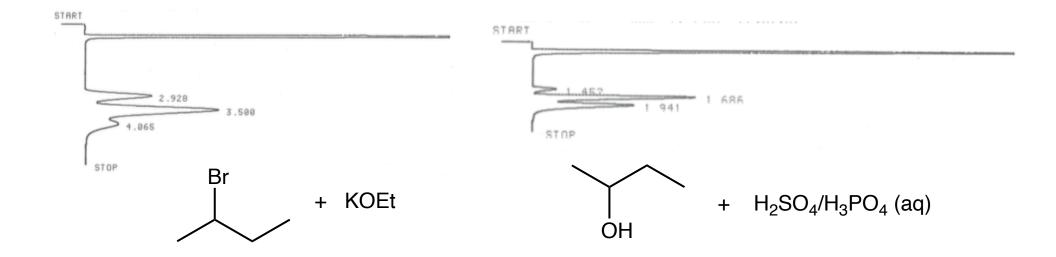
# Reactions

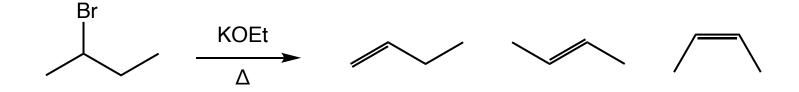


# E Add Stereoselectivity Lab

$$HO \longrightarrow H_2SO_4/H_3PO_4 \longrightarrow H_2O \longrightarrow A$$


Elimination: The E1 Mechanism


$$\begin{array}{c|c} & & H_2SO_4/H_3PO_4 \\ \hline & & H_2O \\ \hline & & \Delta \\ \end{array}$$


Elimination: The E2 Mechanism

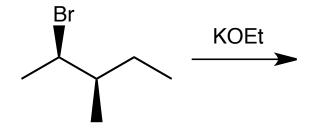
$$Br \underbrace{\hspace{1cm} KOEt}_{\Delta}$$

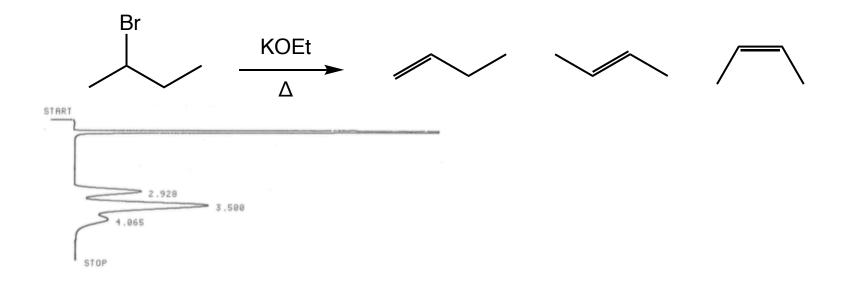
Elimination: The E2 Mechanism



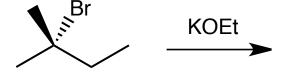





Elimination: The E2 Regiochemistry


Elimination: The E2 Regiochemistry

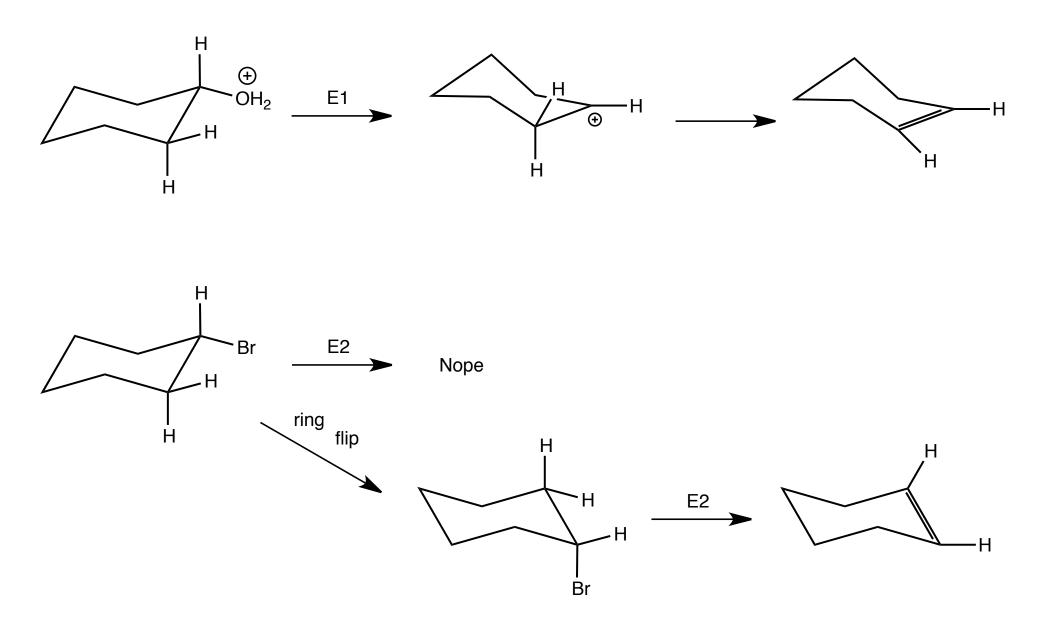
Elimination: The Stereochemistry of the E2 Mechanism



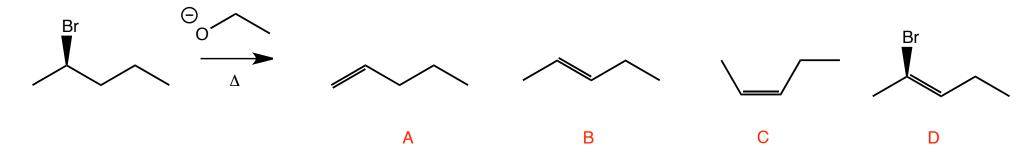

Elimination: The Stereochemistry of the E2 Mechanism






Elimination: The E2 Reaction Summary




Elimination: Issues with Acid Catalyzed Elimination of Alcohols

OH 
$$\frac{H_2SO_4/H_3PO_4}{H_2O}$$

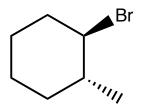
### Elimination: The Stereochemistry of the Mechanisms

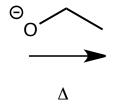


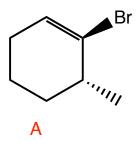
Elimination

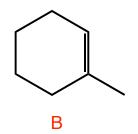


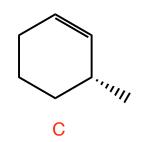
Practice

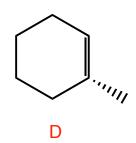




Elimination


Practice


# Elimination







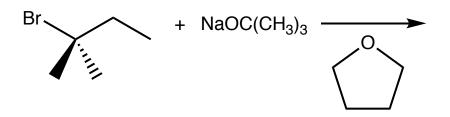




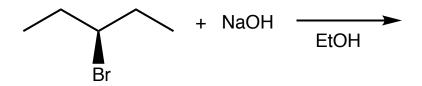


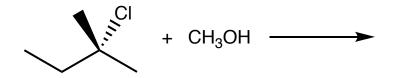

Section


S<sub>N</sub>2/E2


S<sub>N</sub>1/E1

Competition Section


| Conjugate Acid                    | pKa          | Nucleophile     |
|-----------------------------------|--------------|-----------------|
| HI                                | <b>–10</b>   | I-              |
| HBr                               | <b>-9</b>    | Br-             |
| HCI                               | <b>-</b> 7   | CI-             |
| CH <sub>3</sub> OH <sub>2</sub> + | <i>–</i> 2.5 | CH₃OH           |
| H <sub>3</sub> O+                 | -1.7         | НОН             |
| HF                                | 3.2          | F-              |
| H <sub>2</sub> S                  | 7.0          | HS-             |
| HC≡N                              | 9.1          | C≡N-            |
| NH <sub>4</sub> +                 | 9.4          | NH <sub>3</sub> |
| CH₃CH₂SH                          | 10.5         | CH₃CH₂S⁻        |
| CH₃OH                             | 15.5         | CH₃O-           |
| НОН                               | 15.7         | HO-             |
| HCCH                              | 25           | HCC-            |


# Competition





# Competition



