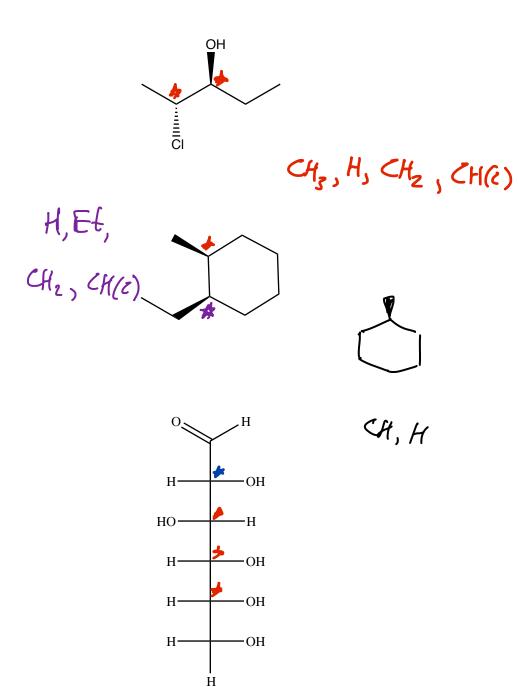
(22) **Today**

Next Class (23)

Sections 5.1 – 5.5 Chirality and Determining the Configuration of Chiral Centers Test 2 on Chap 2, Sections 2.7 through 2.12, Chap 3, and Chap 4.

Sections 5.6 – 5.12 Diastereomers, N,P, and S, and Prochirality

(24) Second Class from Today

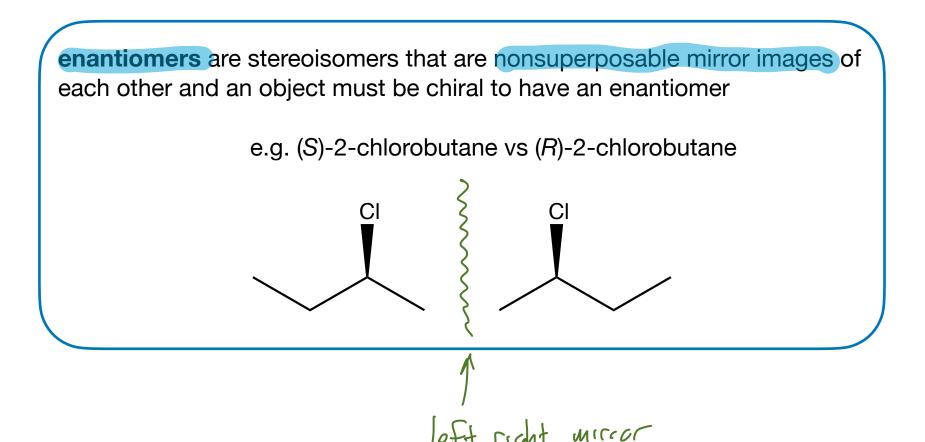

Third Class from Today (25)

Intermediates

Sections 5.6 – 5.12 Diastereomers, N,P, and S, and Prochirality Section 6.1: Kinds of Organic Reactions
Section 6.8: Describing a Reaction: Bond
Dissociation Energies
Section 6.7: Describing a Reaction:
Equilibria, Rates, and Energy Changes
Section 6.2: How Organic Reactions Occur:
Mechanisms
Section 6.9: Describing a Reaction: Energy
Diagrams and Transition States
Section 6.10: Describing a Reaction:

Review session, Tuesday 7:30-9:00 pm wortch email for a room announcement.

CH₂OH

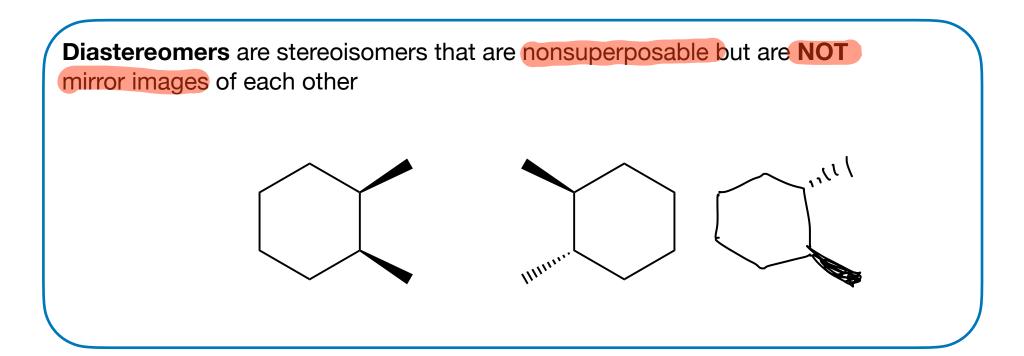


Definitions

stereoisomers are molecules that have the same connectivity but different 3-D relationships between parts of the molecules

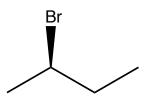
e.g. (R)-2-chlorobutane vs (S)-2-chlorobutane

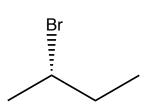
The word **enantiomer** describes the relationship between two stereoisomers.



Definitions

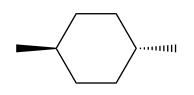
stereoisomers are molecules that have the same connectivity but different 3-D relationships between parts of the molecules

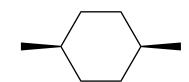

e.g. (cis)-1,2-dimethylcyclohexane vs (trans)-1,2-dimethylcyclohexane


The word diastereomer describes the relationship between two stereoisomers.

Recognizing Enantiomers and Diastereomers: Why is it

important?



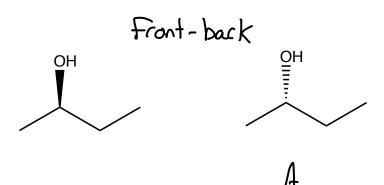

enantioners have the same physical properties

same chemical properties

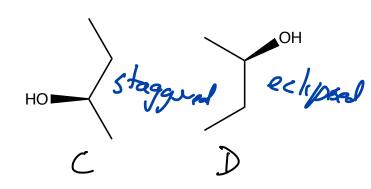
Interact with chiral objects differently

Interact with polarised light differently

BP = 125 °C^{††}


Different chemical + physical proporties

[†]https://us.vwr.com/store/product/16811100/trans-1-4-dimethylcyclohexane-95-0-by-gc


^{††}https://us.vwr.com/store/product/9559540/cis-1-4-dimethylcyclohexane-98-0

What's the Relationship?

Section 5.1 – 5.5

$$\beta$$

different view of the same molecule/rotamer or

enantiomer or diastereomer

rotate nonsuperposale

non superposable

bond

WIIIO INIAGE

mage

A 15 an enantioner

B 15 a dif view

C 15 a dif view

d 15 a dif view

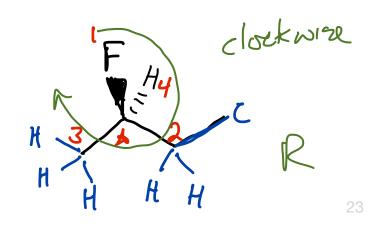
af a former

Assign Priorities

highest priority is given to the group with the highest atomic number for the atom directly bonded to the chirality center

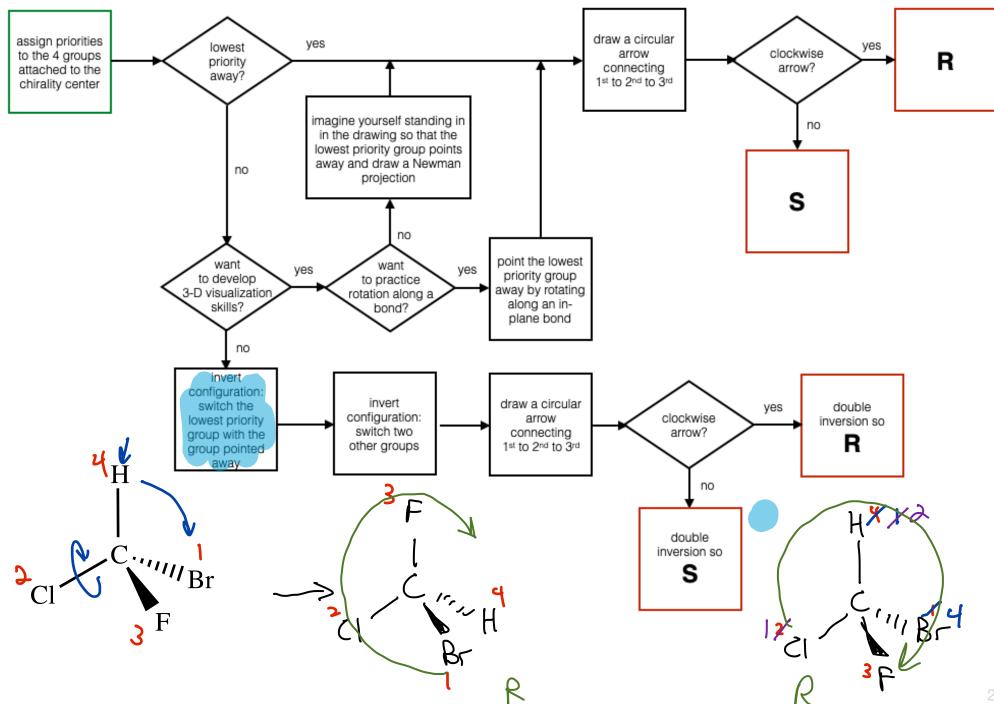
in a tie, consider the atomic numbers of the atoms attached to the atom that is bonded to the chirality center

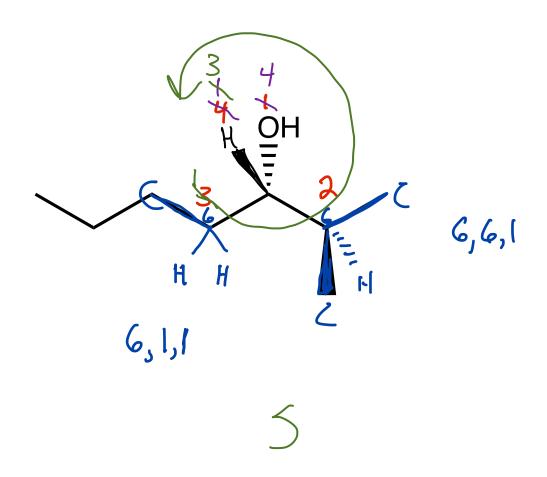
if the atom that is attached to the chirality center has a doubly bonded or triply bonded atom attached to it the atom is treated like there are two or three atoms


for isotopes, the mass number is used (D vs H, ¹²C vs ¹³C)

Point lowest priority group away

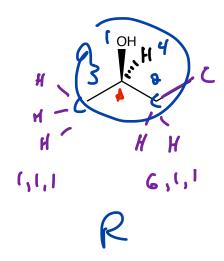
Draw a circle from 1st to 2nd to 3rd priority groups $\frac{2}{3} = \frac{1}{3} \frac{6}{3} = \frac{2}{3} \frac{1}{3} \frac{6}{3} = \frac{1}{$

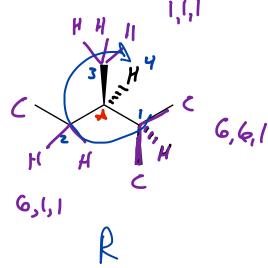

Clockwise circle is **R** configuration

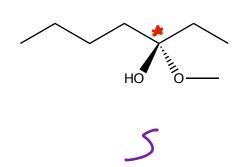

Counter Clockwise circle is S configuration

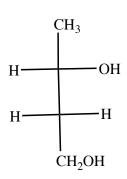
Nomenclature: the *R*,*S* system

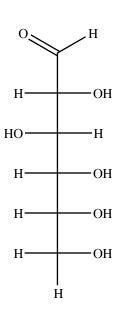
Section 5.1 – 5.5

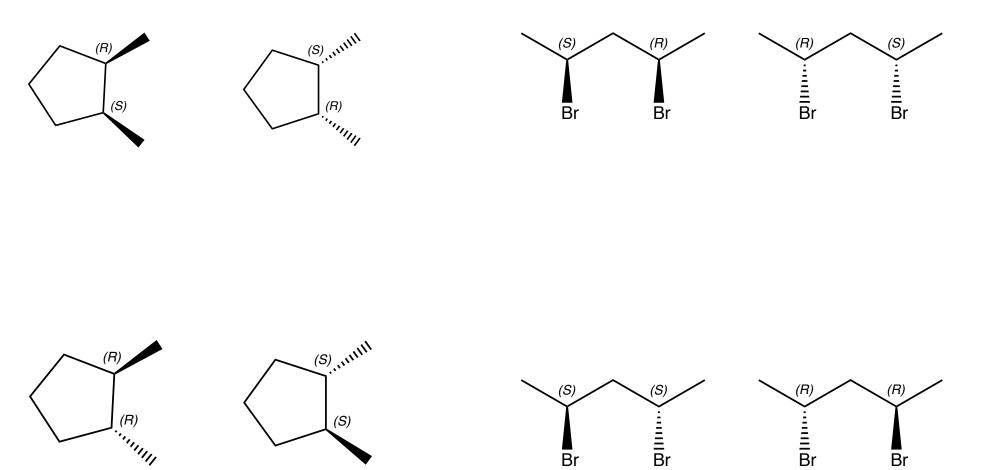





Priorities are based on the atomic number of the atoms bonded to the chiral center.

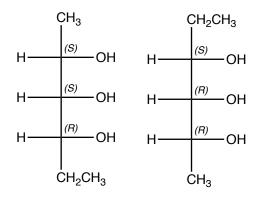

Highest atomic number is 1st place to lowest atomic number in 4th place

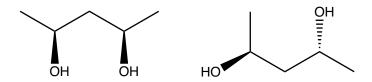

In a tie, go one bond further out.

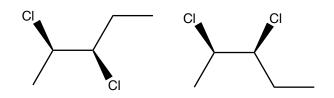


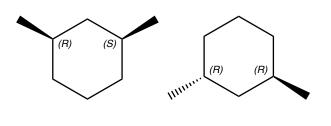
$$H_3C$$
 C
 C
 CH_3

$$H_3C_{M_{N_1}}$$
 $H_3C_{M_{N_1}}$
 $H_3C_{M_{N_1}}$
 $H_3C_{M_{N_1}}$
 $H_3C_{M_{N_1}}$
 $H_3C_{M_2}$
 $H_3C_{M_2$


(S)-S-adenosylmethionine


Enantiomers	Diastereomers
molecules that are	molecules that have the same connectivity and are
nonsuperposable	nonsuperposable
and	but
mirror images	NOT mirror images
of each other	of each other
The relationship can be identified using R,S system of nomenclature	
If all chirality centers in a chiral molecule have opposite configurations and Z,E alkenes, if present, remain the same There's a big BUT	In molecules with more that one chirality center at least one pair but not all pairs of chirality centers have opposite configurations. In molecules with stereogenic alkenes (Z/E configuration) the alkenes have opposite configurations




Enantiomers	Diastereomers	
molecules that are	molecules that are stereoisomers	
nonsuperposable	nonsuperposable	
and	but	
mirror images	NOT mirror images	
of each other	of each other	
The relationship can be identified using R,S system of nomenclature		
If all chirality centers in a chiral molecule have opposite configurations and Z,E alkenes, if present, remain the same Unless the compound is a meso complex	In molecules with more that one chirality center at least one pair but not all pairs of chirality centers have opposite configurations. In molecules with stereogenic alkenes (Z/E configuration) the alkenes have opposite configurations. In a chiral cyclic molecules with cis/trans relationships the cis/trans relationship changes	
Can occur when chirality centers have the same four different groups bonded to each chirality center		

Practice Recognizing Relationships between molecules

- 1. Draw a tetrahedral C atom
- 2. Assign priorities to the groups
- 3. Place the lowest priority group so that it points away
- 4. Draw in priority groups 1 through 3 in the correct (clockwise or counterclockwise) orientation.

(R)-2-chloropentane

(2S,3S)-2-bromo-3-chloropentane

- 1. Draw the molecule
- 2. Assign priorities and check if the correct configuration is drawn
- 3. a. If correct, celebrate, you're done
- 3. b. If incorrect version is drawn, redraw molecule switching the positions of 2 (and only two) substituents.

(R)-2-chloropentane

(2S,3S)-2-bromo-3-chloropentane