(28) Today Next Class (29)

Section 6.5: Using Curved Arrows in Polar Reaction Mechanisms

Section 6.6: Radical Reactions Section 6.3: Polar Reactions

Electron rich and electron poor

Section 6.4: An Example of a Polar Reaction:

Addition of HBr to Ethylene Arrow Pushing Practice

Section 6.4: An Example of a Polar Reaction:
Addition of HBr to Ethylene
Arrow Pushing Practice
7.1 Industrial Preparation and Use of
Alkenes (is an interesting read, but we will
not discuss it in class)
7.2 Calculating the Degree of Unsaturation
7.3 Naming Alkenes
7.4 Cis–Trans Isomerism in Alkenes
7.5 Alkene Stereochemistry and the E,Z
Designation
Skipping 7.6 for now
7.7 Electrophilic Addition Reactions of
Alkenes

(30) Second Class from Today

7.7 Electrophilic Addition Reactions of Alkenes

7.8 Orientation of Electrophilic Additions: Markovnikov's Rule (Regioselectivity)

7.9 Carbocation Structure and Stability

7.10 The Hammond Postulate

Drawing a transition state

7.11 Evidence for the Mechanism of

Electrophilic Additions: Carbocation

Rearrangements

Third Class from Today (31)

Practice Predicting Outcome of H+ Initiated

Electrophilic Addition Reactions

8.2 Halogenation of Alkenes:

Addition of X₂

8.3 Halohydrins from Alkenes:

Addition of HO-X

8.4 Hydration of Alkenes:

Addition of H₂O by Oxymercuration

8.5 Hydration of Alkenes:

Addition of H2O by Hydroboration

Using Curved Arrows dot means odd # of e's two "radicals" come together Polar Bond Formation got e - charge siby | Form

HT + SO-H -> H-O-H

Br- HISO-H -> Br- H-O-H arrows start at a source of e's.

\$\forall \text{e's} \text{ gave away e'} \\

\$\forall \text{p'e's on an atom charge 1 by 1}

A a par of e's in a bond

Section 6.2, 6.5 Radical Bond Formation Br is neutral so that means De's in Br's valence shell $Br \xrightarrow{\mathcal{H}} Br - \mathcal{H} \xrightarrow{\mathcal{H}} \mathcal{H} \xrightarrow{\mathcal{H}} \mathcal{H}$ a radical reacts with a nonradical a new sadical will arrows end where the e-5 wind up t at an atom the et become * in between two atom e's

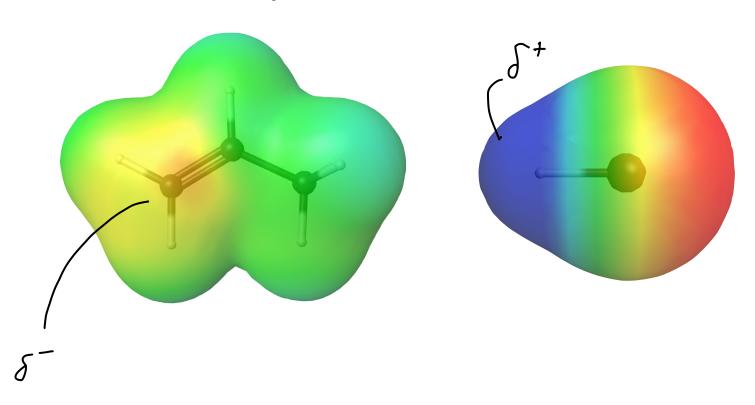
form a bond

e "poor"
c aton electron sich C < atom

Bonds can be made more polar

Polarizability makes polar reaction possible too

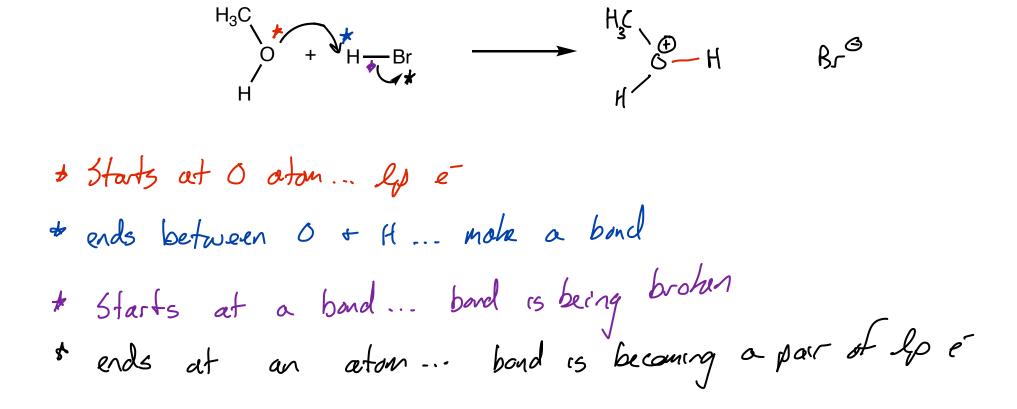
Opposites Attract


Bonds can be made more polar

Polarizability makes polar reaction possible too

An Example of a Polar Reaction: Addition of HBr to Propene

Section 6.4

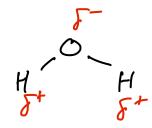

What's wrong with this structure?

Drawing arrays

Find all bands that are created. Find where e's zame from Find all bands that are lost. Find where the e went

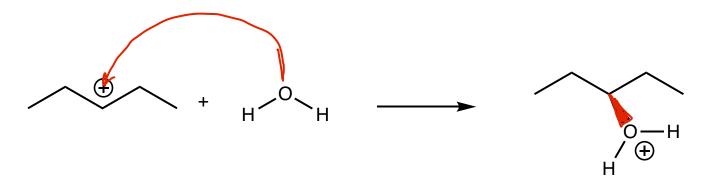
Step 2: Describe what the electrons are doing: making a bond, or becoming a lone pair Step 3: Draw the result.

Step 2: Describe what the electrons are doing: making a bond, or becoming a lone pair


Step 3: Draw the result.

Step 2: Describe what the electrons are doing: making a bond, or becoming a lone pair

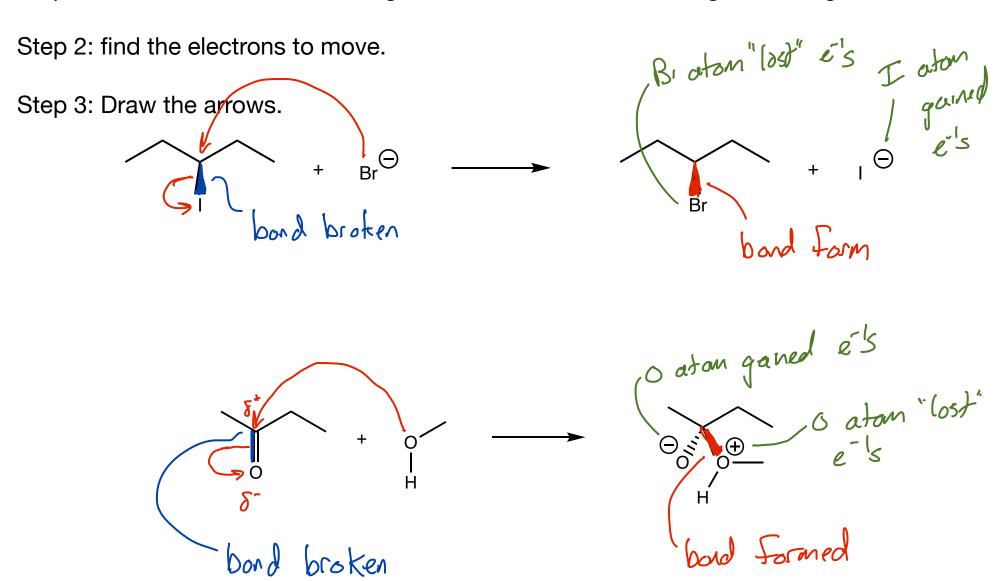
Step 3: Draw the result.


Step 2: Describe what the electrons are doing: making a bond, or becoming a lone pair

Step 3: Draw the result.

Step 2: find the electrons to move.

Step 3: Draw the arrows.


Step 2: find the electrons to move.

Step 3: Draw the arrows.

Step 2: find the electrons to move.

Start arrow at bonds that are lost

Step 3: Draw the arrows.

