Handedness: What makes your hands or your feet have handedness?



Does the large LEGO minifigure have a right hand?

Handedness: What makes your hands or your feet have handedness?



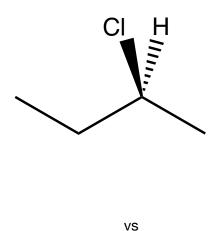
Try again... Does the large LEGO minifigure have a right arm?

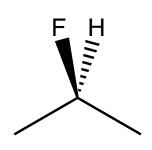
The mirror image of a chiral object is not superposable on the original object

## Which of the following are chiral?

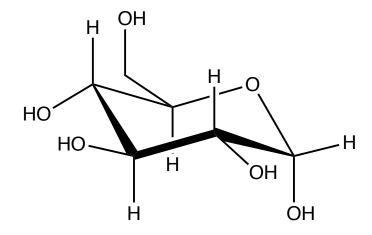
Think about the object, not the drawing



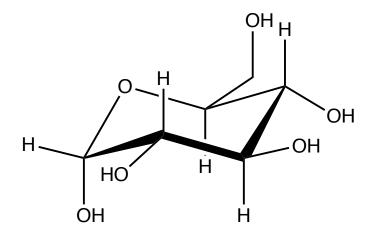

Build


2-chlorobutane

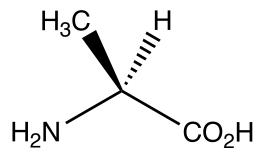
2-fluoropropane


The mirror image of a Chiral Object is not superposable on the original object

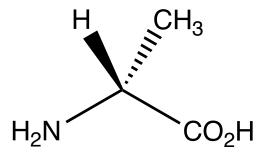
A chiral object cannot have an internal mirror plane (a.k.a. plane of symmetry)\*



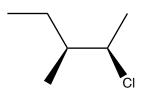




\*Technically, it's an improper axis of rotation, but a mirror plane is an  $S_1$  and a center of inversion is an  $S_0$ , and almost every point group that contains an  $S_n$  axis also contains a mirror plane of some sort. The  $S_4$  point group is only point group that has an improper axis of rotation and doesn't also have a plane of symmetry. The  $C_i$  point group is the only point group that has a center of inversion and doesn't also have a plane of symmetry.




D-glucose 11¢ per gram




L-glucose \$130 per gram



L-alanine

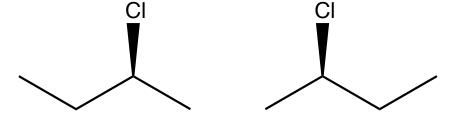


D-alanine



$$\begin{array}{c|c} CH_3 \\ H & OH \\ H & CH_2OH \end{array}$$

#### **Definitions**


**stereoisomers** are molecules that have the same connectivity but different 3-D relationships between parts of the molecules

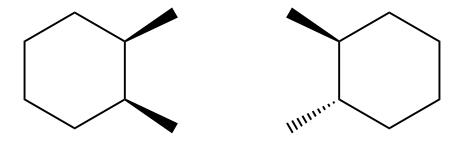
e.g. (R)-2-chlorobutane vs (S)-2-chlorobutane

The word **enantiomer** describes the relationship between two stereoisomers.

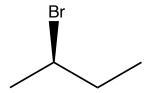
**enantiomers** are stereoisomers that are nonsuperposable mirror images of each other and an object must be chiral to have an enantiomer

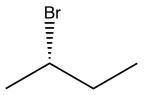
e.g. (S)-2-chlorobutane vs (R)-2-chlorobutane




#### **Definitions**

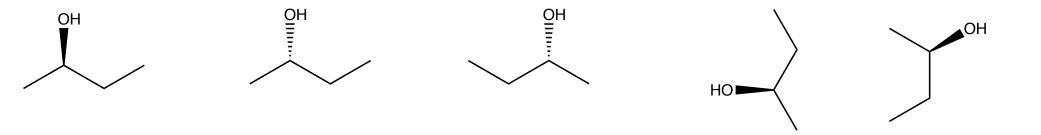
**stereoisomers** are molecules that have the same connectivity but different 3-D relationships between parts of the molecules


e.g. (cis)-1,2-dimethylcyclohexane vs (trans)-1,2-dimethylcyclohexane


The word diastereomer describes the relationship between two stereoisomers.

**Diastereomers** are stereoisomers that are nonsuperposable but are **NOT** mirror images of each other




# Recognizing Enantiomers and Diastereomers: Why is it important?







$$BP = 125 \, ^{\circ}C^{\dagger\dagger}$$



different view of the same molecule/rotamer or enantiomer or diastereomer

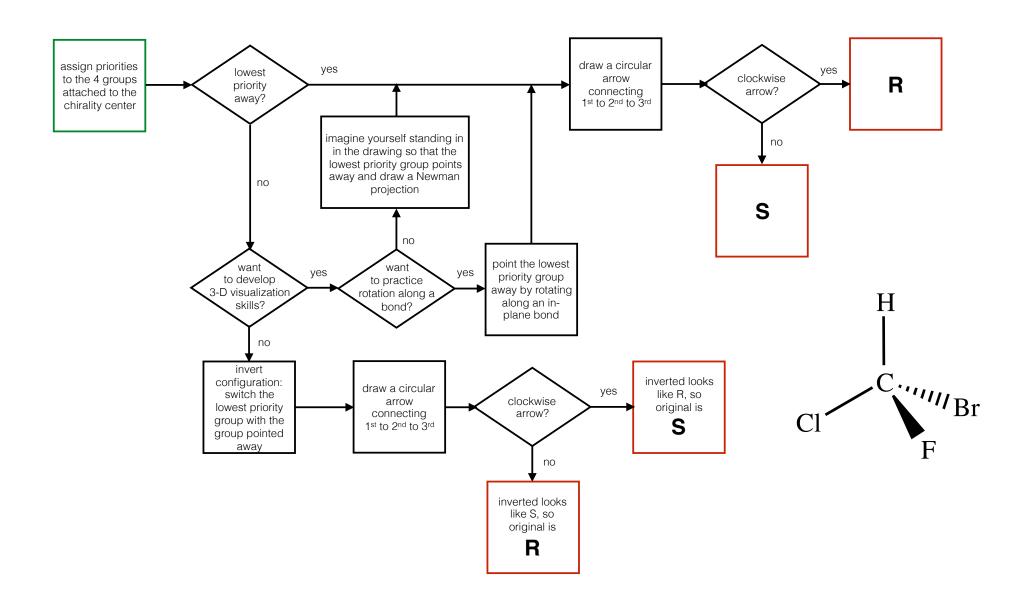
### **Assign Priorities**

highest priority is given to the group with the highest atomic number for the atom directly bonded to the chirality

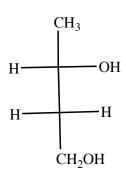
in a tie, consider the atomic numbers of the atoms attached to the atom that is bonded to the chirality center

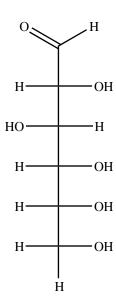
if the atom that is attached to the chirality center has a doubly bonded or triply bonded atom attached to it the atom is treated like there are two or three atoms

for isotopes, the mass number is used (D vs H, 12C vs 13C)


Point lowest priority group away

Draw a circle from 1st to 2nd to 3rd priority groups


**Clockwise** circle is **R** configuration


Counter Clockwise circle is S configuration

# Determining Configuration (R vs S)



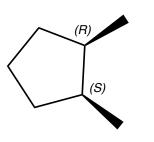
Priorities are based on the atomic number of the atoms bonded to the chiral center. Highest atomic number is 1<sup>st</sup> place to lowest atomic number in 4<sup>th</sup> place In a tie, go one bond further out.

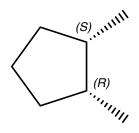


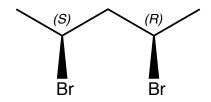


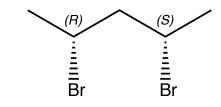
$$H_{3}C$$
 $C$ 
 $H_{2}$ 
 $C$ 
 $CH_{3}$ 

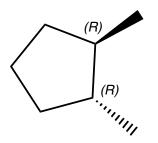
$$H_3C_{M_{N_1}}$$
 $H_3C_{M_{N_1}}$ 
 $H_3C_{M_{N_1}}$ 
 $H_3C_{M_{N_1}}$ 
 $H_3C_{M_{N_1}}$ 
 $H_3C_{M_2}$ 
 $H_3C_{M_2$ 

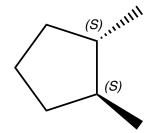

(S)-S-adenosylmethionine

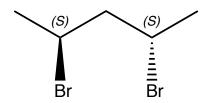

| Enantiomers                                                         | Diastereomers                                 |  |  |  |
|---------------------------------------------------------------------|-----------------------------------------------|--|--|--|
| molecules that are                                                  | molecules that have the same connectivity and |  |  |  |
| nonsuperposable                                                     | are                                           |  |  |  |
| and                                                                 | nonsuperposable                               |  |  |  |
| and                                                                 | but                                           |  |  |  |
| mirror images                                                       | NOT mirror images                             |  |  |  |
| of each other                                                       |                                               |  |  |  |
|                                                                     | of each other                                 |  |  |  |
| The relationship can be identified using R,S system of nomenclature |                                               |  |  |  |

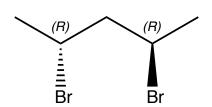

If all chirality centers in a chiral molecule have opposite configurations and Z,E alkenes, if present, remain the same


There's a big BUT...


In molecules with more that one chirality center at least one pair but not all pairs of chirality centers have opposite configurations. In molecules with stereogenic alkenes (Z/E configuration) the alkenes have opposite configurations









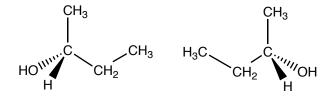


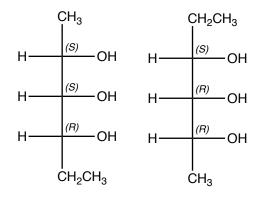


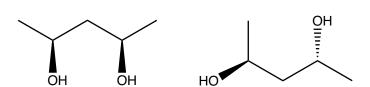

| Enantiomers        | Diastereomers                    |
|--------------------|----------------------------------|
| molecules that are | molecules that are stereoisomers |
| nonsuperposable    | nonsuperposable                  |
| and                | but                              |
| mirror images      | NOT mirror images                |
| of each other      | of each other                    |

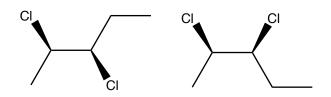
The relationship can be identified using *R*,*S* system of nomenclature

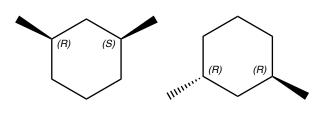
If all chirality centers in a chiral molecule have opposite configurations and Z,E alkenes, if present, remain the same


Unless the compound is a meso complex


Can occur when chirality centers have the same four different groups bonded to each chirality center


In molecules with more that one chirality center at least one pair but not all pairs of chirality centers have opposite configurations. In molecules with stereogenic alkenes (*Z/E* configuration) the alkenes have opposite configurations.


In a chiral cyclic molecules with *cis/trans* relationships the *cis/trans* relationship changes


### Practice Recognizing Relationships between molecules











- 1. Draw a tetrahedral C atom
- 2. Assign priorities to the groups
- 3. Place the lowest priority group so that it points away
- 4. Draw in priority groups 1 through 3 in the correct (clockwise or counterclockwise) orientation.

(R)-2-chloropentane

(2S,3S)-2-bromo-3-chloropentane

- 1. Draw the molecule
- 2. Assign priorities and check if the correct configuration is drawn
- 3. a. If correct, celebrate, you're done
- 3. b. If incorrect version is drawn, redraw molecule switching the positions of 2 (and only two) substituents.

(R)-2-chloropentane

(2S,3S)-2-bromo-3-chloropentane