Kinds of Organic Reactions

Section 6.1

Addition Reactions

Elimination Reactions

Substitution Reactions

Rearrangement Reactions

Bond Dissociation Enthalpies in kJ/mol¹							
Н—Н	436	(CH ₃) ₂ CH—H	410	CH ₃ CH ₂ —CH ₃	370		
H—F	570	(CH ₃) ₂ CH—CI	354	(CH ₃) ₂ CH—CH ₃	369		
H-CI	431	(CH ₃) ₂ CH-Br	299	(CH ₃) ₃ C — CH ₃	363		
H—Br	366	(CH ₃) ₃ C—H	400	H ₂ C=CH—CH ₃	426		
H—I	298	(CH ₃) ₃ C—CI	352	H ₂ C=CHCH ₂ —CH ₃	318		
CI-CI	242	(CH₃)₃C−Br	293	H ₂ C=CH ₂	728		
Br—Br	194	(CH ₃) ₃ C—I	227	C ₆ H ₅ —CH ₃	427		
1-1	152	H ₂ C=CH—H	464	C ₆ H ₅ CH ₂ —CH ₃	325		
СН3—Н	439	H ₂ C=CH—Cl	396	CH₃C(O)—H	374		
CH ₃ —Cl	350	H ₂ C=CHCH ₂ —H	369	но-н	497		
CH ₃ —Br	294	H ₂ C=CHCH ₂ —Cl	298	но-он	211		
CH ₃ —I	239	C ₆ H ₅ —H	472	CH₃O—H	440		
CH ₃ —OH	385	C ₆ H ₅ —CI	400	CH₃S—H	366		
CH ₃ -NH ₂	386	C ₆ H ₅ CH ₂ —H	375	CH₃CH₂O—H	441		
CH ₃ CH ₂ —H	421	C ₆ H ₅ CH ₂ —CI	300	CH₃C(O)—CH₃	352		
CH ₃ CH ₂ —Cl	352	C ₆ H ₅ —Br	336	CH ₃ CH ₂ O-CH ₃	355		
CH ₃ CH ₂ —Br	293	C ₆ H ₅ —OH	464	NH ₂ —H	450		
CH ₃ CH ₂ —I	233	HCC-H	558	H-CN	528		
CH ₃ CH ₂ —OH	391	CH ₃ -CH ₃	377	H ₂ C=CH ₂ π bond	2732		

¹Unless otherwise indicated values are from *Organic Chemistry: a 10th Edition*, McMurry, OpenStax, 2024 ²JoC Vol. 89, Issue 20, 18 October 2024, Pages 15158-15163

Bond Dissociation Enthalpies in kJ/mol ¹							
H—Br	366	CH ₃ CH ₂ —Br	293				
H ₂ C=CH ₂ π bond	273	CH ₃ CH ₂ —H	421				

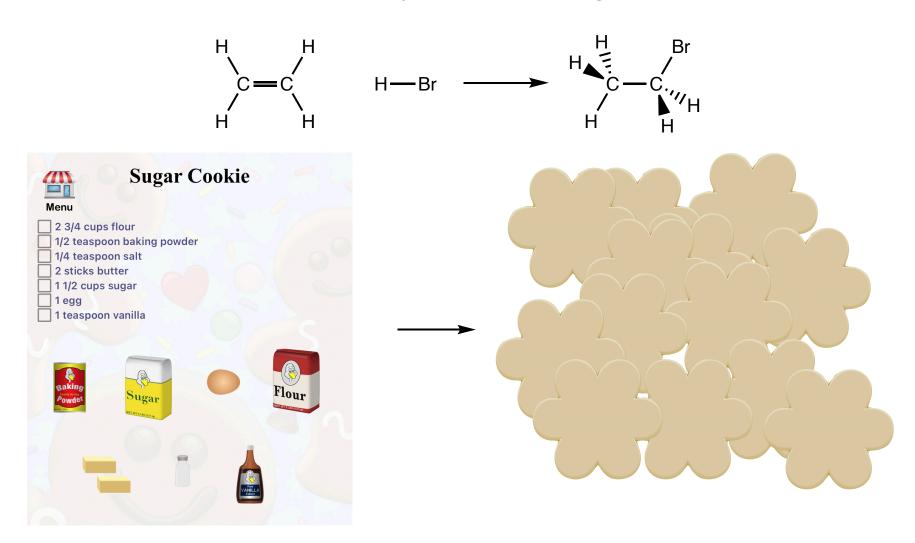
Describing a Reaction: Bond Dissociation Energies

Section 6.8

 $\Delta H^{\circ} = -30 \text{ kJ/mol}$

Gibbs Free Energy

$$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$$


The Equilibrium Constant

Gibbs Free Energy and the Equilibrium Constant

$$\Delta G^{\circ} = - \; RT \; In K_{eq}$$

relationship between equilibria and energy changes and rates

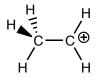
Balanced chemical equations are like ingredient lists

Mechanisms are like the instructions

- 1. Cream the butter and sugar: beat together the butter and sugar with an electric mixer (hand-held or stand mixer) until the mixture is light and fluffy.
- 2. Add eggs and vanilla
- 3. Add flour, baking powder, and salt: Measure these dry ingredients into a separate bowl, whisk them together thoroughly, then turn your mixer to a lower speed and stir the flour mixture into the butter and sugar mixture.
- 4. Cover the dough with plastic wrap and refrigerate for at least one hour.1

$$H = C = C$$
 $H = Br$
 $H = Br$

¹ https://www.allrecipes.com/recipe/10402/the-best-rolled-sugar-cookies/

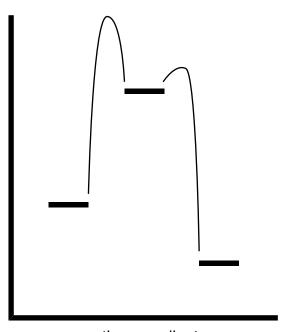

Reaction Coordinate Diagrams

Section 6.9, 6.10

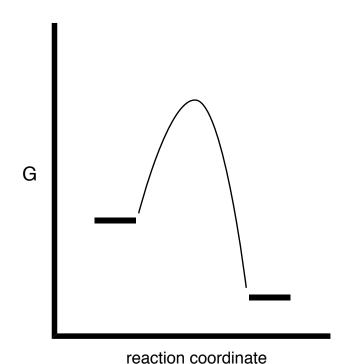
Reactant(s)

Product(s)

Transition State(s)

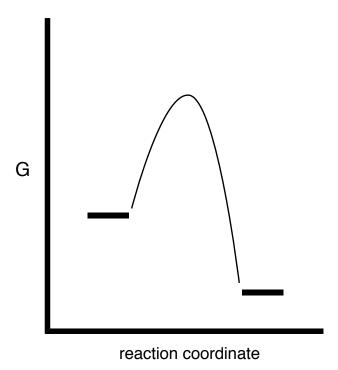

G

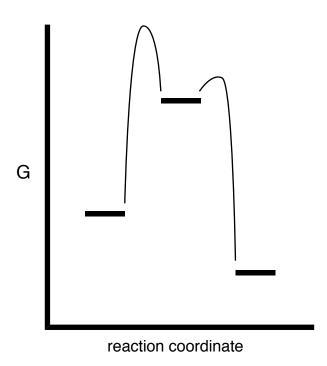
Intermediate(s)


Activation Energy ΔG[‡] rate of a reaction (kinetics)

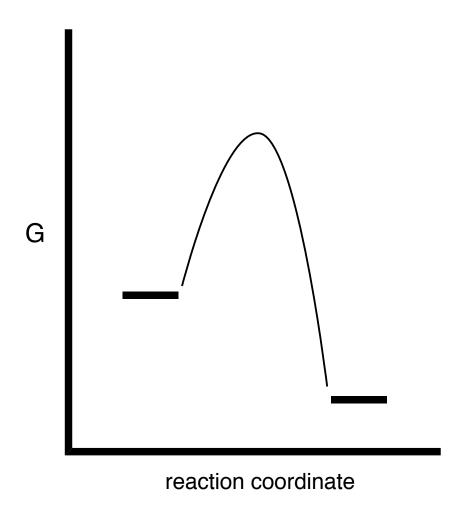
ΔG (thermodynamics)

K (thermodynamics)


reaction coordinate


Reaction Coordinate Diagrams: Transition STates and the Hammond Postulate

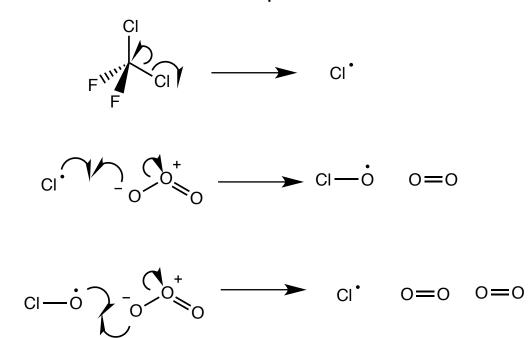
Section 6.9, 6.10, 7.10


Transition State(s)

Intermediate(s)

Catalysis Section 6.9, 6.10

Homolytic Cleavage


Heterolytic Cleavage

Radical Bond Formation

Polar Bond Formation

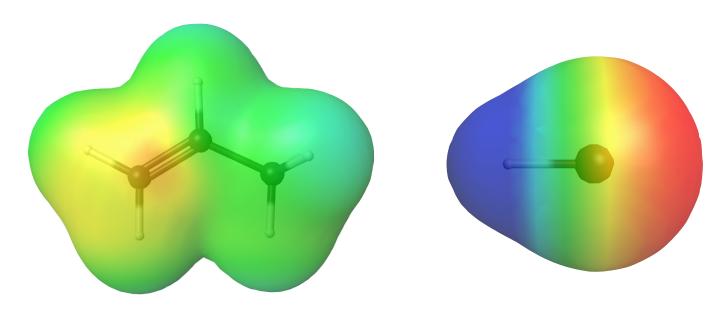
Radical Reactions Section 6.6

Radical Chain Reactions in Environmental Chemistry ozone depletion

Opposites Attract

Bonds can be made more polar

Polarizability makes polar reaction possible too


Polar Reactions: Electrophiles and Nucleophiles

Section 6.3

An Example of a Polar Reaction: Addition of HBr to Propene

Section 6.4

What's wrong with this structure?

Using Curved Arrows in Polar Reaction Mechanisms: Addition of HBr to H₂O

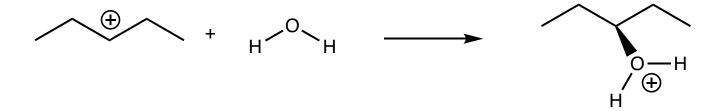
Section 6.5

Using Curved Arrows in Polar Reaction Mechanisms: Addition of HBr to Propene

Section 6.5

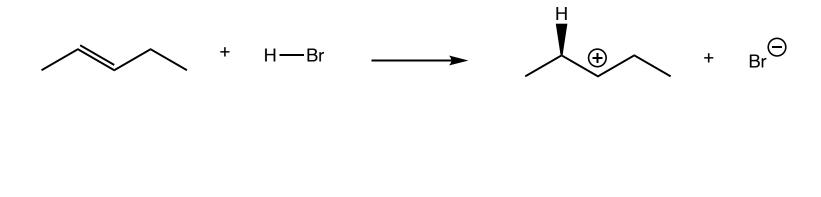
Draw a reaction coordinate diagram for a one-step mechanism that has an unfavorable ΔG (a small K) and a large activation energy

Practice

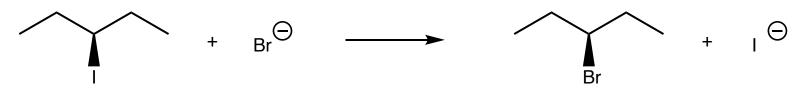

Step 2: Describe what the electrons are doing: making a bond, or becoming a lone pair

Step 2: Describe what the electrons are doing: making a bond, or becoming a lone pair

Step 2: Describe what the electrons are doing: making a bond, or becoming a lone pair


Step 2: Describe what the electrons are doing: making a bond, or becoming a lone pair

Step 2: find the electrons to move.



Step 2: find the electrons to move.

Step 2: find the electrons to move.

Step 2: find the electrons to move.

