3. (10 pts.) In the gas phase, triethylamine is attracts H^+ more strongly than diethylamine. On the other hand, in aqueous solution the diethylamine more strongly attracts H^+ . Explain these observations.

4. The following questions refer to the hypothetical formation ammonia and borane (BH $_{\rm 3}$).	of a Lewis acid-ba	se adduct between
a. (3 pts.) In the reaction of BH_3 and ammonia to form H_3NBH_3 , which molecule acts as the Lewis base?	e' a ₂ "	——————————————————————————————————————
b. (3 pts.) In the reaction of BH_3 and H_3N to form H_3NBH_3 , which molecule acts as the Lewis acid?	a ₁ '	- ∰ a ₁
c. (4 pts.) Circle and label (with acronyms) the MO's that participate in the formation of the acid-base adduct.	_{a1'}	-
d. (4 pts.) Draw the new MO's that form when the adduct forms. Ignore all MO's not directly involved in adduct formation.		-∰ a₁ NH₃

e. (4 pts.) If the only available orbital on BH_3 is higher in energy than the filled orbital on the ammonia, why do the two molecules form a Lewis acid-base adduct?

- 5. a. (8 pts.) Draw a reaction that shows how strongly positive metal ions like Al^{3+} cause H^+ to form when the metal ions are added to water.
 - b. (4 pts.) Is the metal acting as a Lewis acid or a Lewis base.

- 6. a. (5 pts.) Which of the phosphines below would be most effective at forming a Lewis acid-base adduct with triethylborane. Explain
 - b. (5 pts.) Which would be the least effective. Explain

$$H^{2}$$
 H_{3} H_{2} H_{2} H_{2} H_{2} H_{3} H_{2} H_{3} H_{4} H_{3} H_{4} H_{5} H_{5

7. (10 pts.) AgI is not soluble in water; however, AgF is moderately soluble in water. Explain.

- 8. a. (8 pts.) Determine the oxidation numbers for the transition metals in the following coordination complexes, and
 - b. (8 pts.) Draw a three dimensional representation of the structures for the compounds with octahedral coordination complexes.

 $[Re(CO)_3(H_2O)_3]Cl$

Fe(CO)₅

 $K_2[MoO_4]$

 $K_2[PtCl_6]$