Today's Class

Attendance

Read Chap 1 and Chapter 2 sections 1 and 2

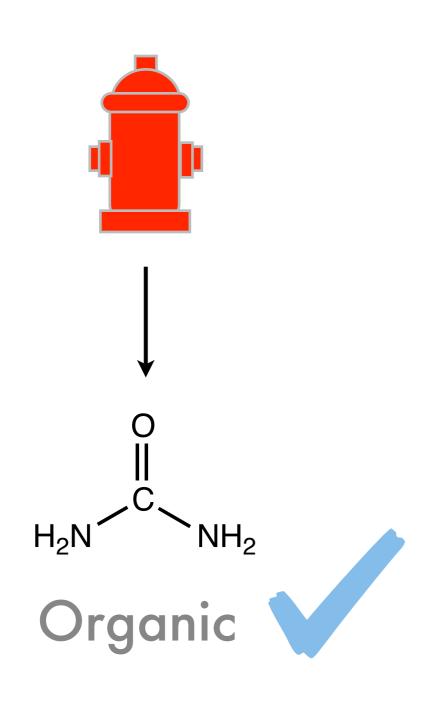
What's Inorganic Chemistry and from Where Did
this Stuff Come?

A simplified look at quantum mechanics, the results thereof, and shielding

Syllabus

Early experiments to identify the atom

Advanced Inorganic


The Other Chemistry

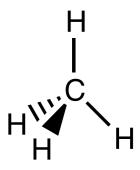
The Chemistry Living Things Organic

The Chemistry
of
Non-living Things

Inorganic

Friedrich Wöhler

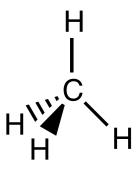
Organic

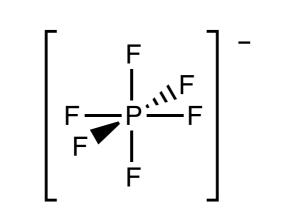

Inorganic

The Chemistry
of
Carbon and
Hydrocarbons

The Chemistry of Everything Else

Organic

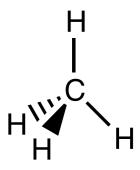

Inorganic

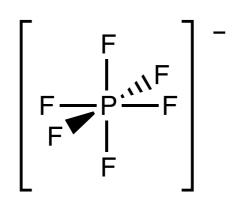


lame

awesome

Organic	Inorganic
four 2-e bonds,	more than four
maximum	2-e bonds
	possible

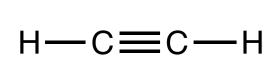


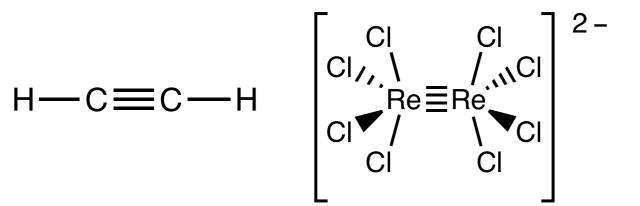


lame

awesome

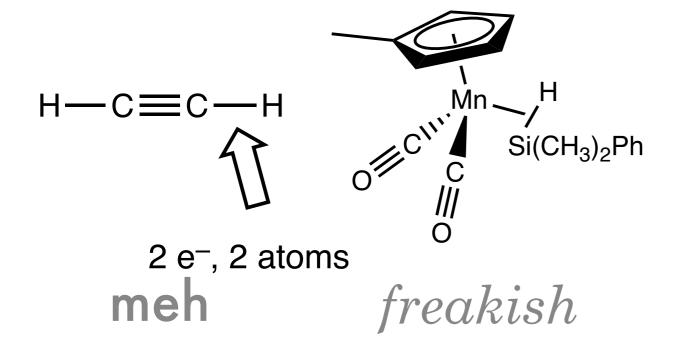
Organic	Inorganic
four 2-e bonds,	more than four
maximum	2-e bonds
	possible
fairly strict	
adherence to	
octet rule	

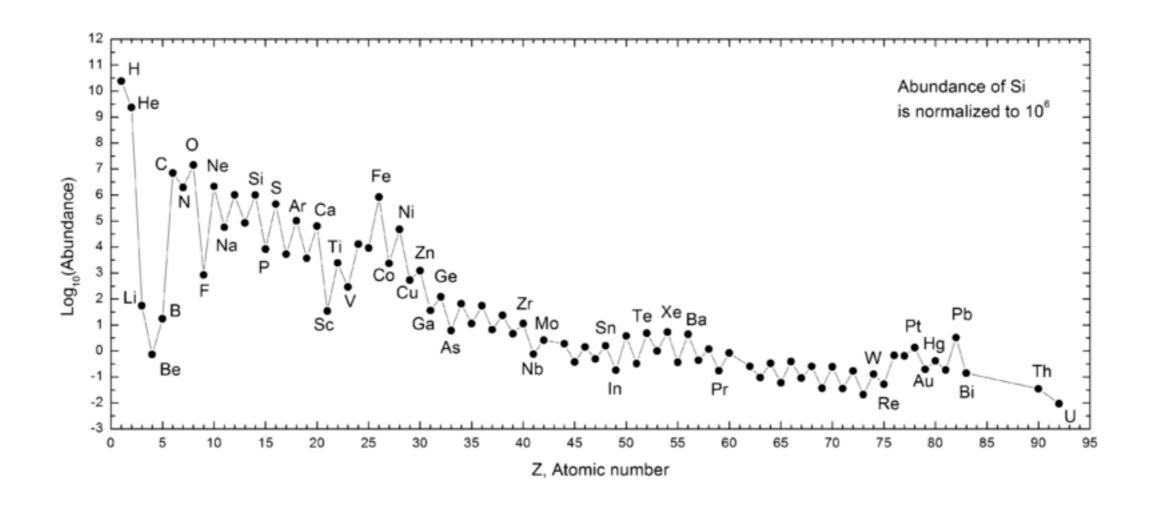




lame

awesome

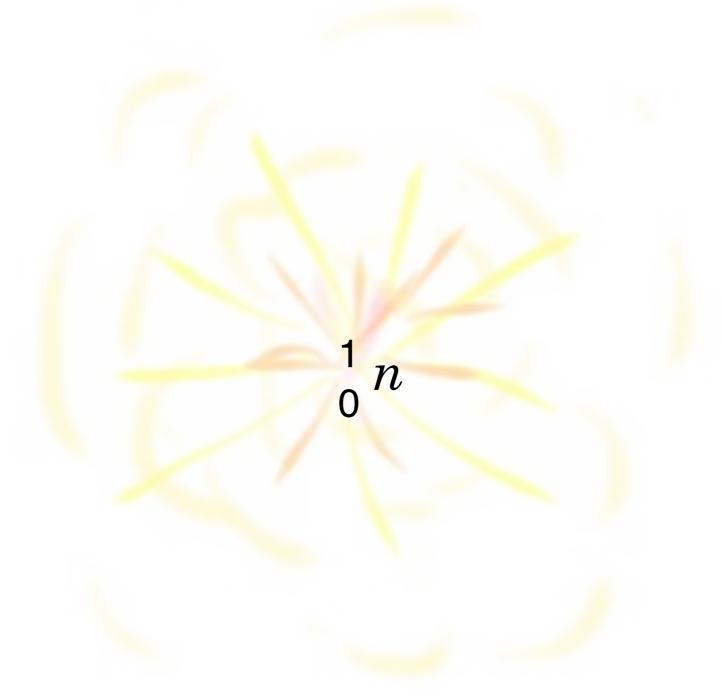

Organic	Inorganic
four 2-e bonds,	more than four
maximum	2-e bonds
	possible
fairly strict	often exceed
adherence to	octet rule for
octet rule	elements $n \ge 3$


quadruple

Organic	Inorganic
four 2-e bonds,	more than four
maximum	2-e bonds
	possible
fairly strict	often exceed
adherence to	octet rule for
octet rule	elements $n \ge 3$
no greater than	higher order
triple bond	bonds possible

Organic	Inorganic
four 2-e ⁻ bonds, maximum	more than four 2-e ⁻ bonds possible
fairly strict adherence to octet rule	often exceed octet rule for elements $n \ge 3$
no greater than triple bond	higher order bonds possible
plain 2-e ⁻ , 2 center bonds	multi-center multi-e ⁻ bonds

Abundance of Elements in Our Solar System



http://en.wikipedia.org/wiki/File:SolarSystemAbundances.png, data from Katharina Lodders (2003). "SOLAR SYSTEM ABUNDANCES AND CONDENSATION TEMPERATURES OF THE ELEMENTS". The Astrophysical Journal 591: 1220–1247.

Where Does All This Cool Stuff Come From?

Ask Prof. Rees....

Big Bang Nucleosynthesis

Big Bang Nucleosynthesis

Big Bang Nucleosynthesis Ends at Be

Stellar Nucleosynthesis Example Reactions

Nuclei larger than Fe are not typically made by stellar nucleosynthesis

Atoms Heavier than Fe?

Can be made by neutron capture

$${}_{z}^{m}X + {}_{0}^{1}n \longrightarrow {}_{z}^{m+1}X$$

$${}_{z+1}^{m+1}Y + {}_{-1}^{0}\beta + \overline{\nu}_{e}$$

Composite X-Ray and optical image of the Crab Nebula

Credits for X-ray Image: NASA/CXC/ASU/J. Hester et al.

Credits for Optical Image: NASA/HST/ASU/J. Hester et al.

Atoms Heavier than Fe?

Can be made by neutron capture

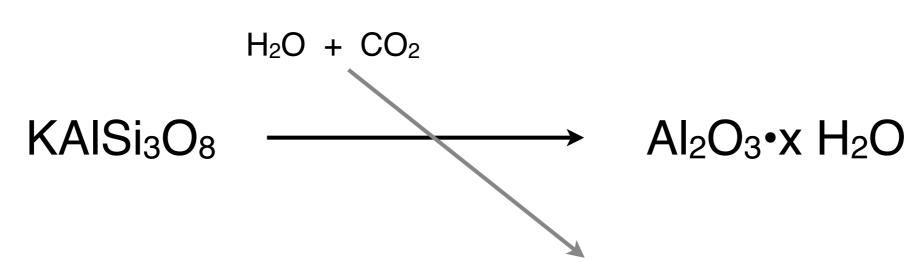
$${}_{z}^{m}X + {}_{0}^{1}n \longrightarrow {}_{z}^{m+1}X$$

$${}_{z+1}^{m+1}X \longrightarrow {}_{z+1}^{m+1}Y + {}_{-1}^{0}\beta + \overline{\nu}_{e}$$

s-process r-process

Composite X-Ray and optical image of the Crab Nebula

Credits for X-ray Image: NASA/CXC/ASU/J. Hester et al. Credits for Optical Image: NASA/HST/ASU/J. Hester et al.


Distribution of Elements on Earth

siderophiles	combine with iron and accumulate in the core
lithophiles	combine with oxygen and halogens and accumulate in the crust
chalcophiles	combine with sulfur, selenium, and arsenic and accumulate in the crust

Moved Around

Water and Magma

for example

HSiO₄ (silicates and carbonates)