(5) Today	Next Class (6)
2.2.4 Shielding	2.3 Periodic Properties
2.3 Periodic Properties	3.1.1 Resonance and 3.1.3 Formal Charge
	3.1.2 Expanded Octets
	3.1.4 Failure of Lewis Structures to Predict Unusual Cases
(7) Second Class from Today	Third Class from Today (8)

3.2 VSEPR

3.2 VSEPR

e- 19 the sauce

Slater's Rules for Approximating Effective Nuclear Charge

$$Z_{\rm eff} = Z - S^{2}$$

Where Z_{eff} = effective nuclear charge, Z = nuclear charge, and S = shielding constant

- 1. group orbitals by n and l
 - (1s) (2s,2p) (3s,3p) (3d) (4s, 4p) (4d) (4f) (5s, 5p) (5d) (etc)
- 2. electrons in groups to the right do not shield electrons to their left
- 3. S can be determined for ns and np electrons

a. each electron in the same group contributes 0.35 to the value of S for other electrons in the same group exception, 1s electron contributes 0.30

- c. each electron in n 2 groups contribute 1.00 to S \longleftarrow 2 or more stells closer the 4. for *nd* and *nf*
- - a. each electron in the same group contributes 0.35 to the value of S (same as 3a)
 - b. each electron in a group to the left contributes 1.00 to S

152 2522p5 15 e 3 experience ... 5 = 1.0.3 = 0.3 Z.F=9-0.3=8.7 2512p S = 6.0.35 + 2.6.85 t, FF = 9-3,8 = 5.2

Section 2.2.4

Slater's Rules for Determining Effective Nuclear Charge

$$Z_{eff} = Z - S$$

Where Z_{eff} = effective nuclear charge, Z = nuclear charge, and S = shielding constant

- 1. group orbitals by n and l
 - (1s) (2s,2p) (3s,3p) (3d) (4s, 4p) (4d) (4f) (5s, 5p) (5d) (etc)
- 2. electrons in groups to the right do not shield electrons to their left
- 3. S can be determined for ns and np electrons
 - a. each electron in the same group contributes 0.35 to the value of S for other electrons in the same group exception, 1s electron contributes 0.30
 - b. each electron in n 1 groups contribute 0.85 to S
 - c. each electron in n 2 groups contribute 1.00 to S
- 4. for nd and nf
 - a. each electron in the same group contributes 0.35 to the value of S (same as 3a)
 - b. each electron in a group to the left contributes 1.00 to S

353p 252p 15

Zeff for Fe's 45 e's contribution 45 e's, 3d, 353p, 252p, 15

$$5 = 1.0.35 + 6.0.85 + 8.0.85 + 8.1 + 2.1 = 20.25$$

Zeff = 26-12.25 = 3.75
Zeff Fe's 3d e's contribute 3d, 353p, 252p, 15
 $5 = 5.0.35 + 8.1 + 7.1 + 2.1 = 18 + 1.75 = 6.25$

From left to righ contration E Increases Z, fit increases. MOR E needed to senare e

from top to bottom as distance from the Auchos increases of becomes easier to remove e's

1 vs 1