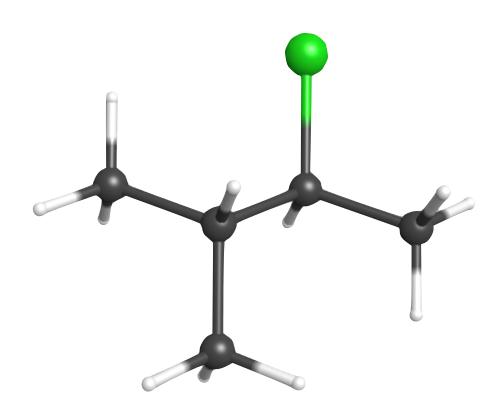
Appropriate Problems from McMurry Chap 1

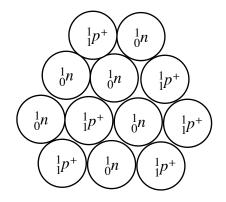
Section 1.3 Problems 1-1 and 1-3

Section 1.4 Problems 1-4 through 1-7, 1-24 through 1-28 1-33

Section 1.5 - 1.10 Problems 1-8, 1-9, 1-10, 1-11, 1-12, 1-13, 1-14, 1-34 – 1-40, 1-48, 1-49, 1-50 (part a is asking how are they similar electronically), 1-56

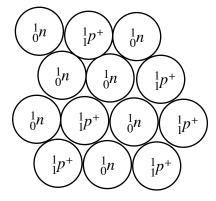

Section 1.12 Problems 1-15 through 1-21, 1-41 through 1-44, 1-52, 1-53, 1-54, 1-55

Challenging Problems 1-45, 1-46, 1-47, 1-51

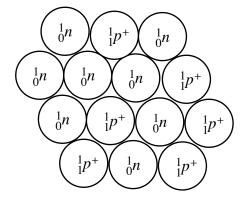

Atoms, Elements, Molecules, and Substituents or Groups

A diversion into the language of chemistry...

"In chemistry, an element is a pure substance consisting only of atoms that all have the same numbers of protons in their atomic nuclei."

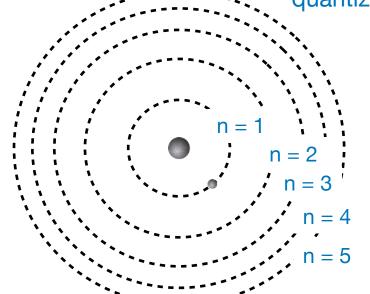


¹ https://en.wikipedia.org/wiki/Chemical_element accessed September 3, 2021


6 protons 6 neutrons

12**C**

6 protons 7 neutrons


13**C**

6 protons 8 neutrons

14**C**

Line spectra produced by excited atoms revealed that electrons can only exist in specific energy levels and any model that attempts to describe the atom must have quantized energy levels.

Bohr successfully modeled the Hydrogen atom like a planetary system using particle physics; e.g.,

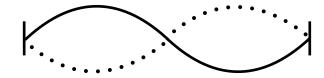
e- orbited the atom in defined energy levels

e- was held in its orbit by electrostatic attraction

$$E = KE + PE$$
 which is $E = 1/2 \text{ mv}^2 + Ze^2/r$

The model only worked for atoms with one electron.

Also it is physically impossible for electrons to orbit a nucleus like the Moon orbits the Earth.... The electrons would radiate energy and crash into the nucleus.


Another branch of Physics also researched systems that had quantized energy levels...

Wave Mechanics

$$n = 2$$

Wave/Quantum Mechanical Model

Bohr had 1 quantum number.

the electron is in the n = 1 or 2 or 3 or 4... shell

Quantum Mechanics requires four quantum numbers to describe an electron: n, l, m_l , and m_s .

n is the principal energy level
l describes the shape of the orbital
m_l describes the orientation of the orbital and
m_s indicated the spin of the electron.

1 Å = 100 pm

Further, as n gets larger more orbital shapes (l's) become available and as more shapes become available, those shapes have more possible orientations (\mathbf{m}_l 's).

Sections 1.1 – 1.3

The H atom's only electron:

$$n = 1$$
, $l = 0$, $m_l = 0$, and $m_s = 1/2$


He's two e-'s:

$$n = 1$$
, $l = 0$, $m_l = 0$, and $m_s = \frac{1}{2}$
 $n = 1$, $l = 0$, $m_l = 0$, and $m_s = -\frac{1}{2}$

B's five e-'s:

n = 1,
$$l = 0$$
, $m_l = 0$, and $m_s = \frac{1}{2}$
n = 1, $l = 0$, $m_l = 0$, and $m_s = \frac{-1}{2}$
n = 2, $l = 0$, $m_l = 0$, and $m_s = \frac{1}{2}$
n = 2, $l = 0$, $m_l = 0$, and $m_s = \frac{-1}{2}$
n = 2, $l = 1$, $m_l = 1$, and $m_s = \frac{1}{2}$

Sections 1.1 – 1.3

Use the periodic table to determine electron configurations

Use the periodic table to determine the number of valence electrons

Use the periodic table to identify metals and non-metals

Use the periodic table to remember trends in size

Use the periodic table to remember trends in electronegativity

Use the periodic table to predict likely charges of ions

Use the periodic table to predict likely bond formation

Use trends in size, electron configuration, and nuclear charge to explain electronegativity trend

Introduce Valence Bond Theory (hybridization)

The Periodic Table Is Your Friend

Sections 1.1 – 1.3

1																							2
Н																							He
3	4															5		6	7		8	9	10
Li	Ве																В	С	1	V	0	F	Ne
11	12															13	3	14	15	i	16	17	18
Na	Μį	9															41	Si	F)	S	CI	Ar
19	20	2	21	22	23	24		25	26	27		28		29	30	3	l	32	33	}	34	35	36
K	Ca	a	Sc	Ti	\	/ (Cr	Mr	۱ F	e C	0	Ni	i	Cu	Z	n C	а	Ge	<u>,</u> A	S	Se	Br	Kr
37	38	3	9	40	41	42		43	44	45		46		47	48	49	•	50	51		52	53	54
Rb	Sı		Υ	Zı	· N	b M	lo	Тс	R	u R	h	Po	b	Ag	С	d l	n	Sn	S	b	Те	I	Xe
55	56	5	57	72	73	74		75	76	77		78		79	80	8	I	82	83	;	84	85	86
Cs	Ва	a	La	H	f T	a V	٧	Re	O	s I	r	Pt	t	Au	Н	g	ΤI	Pb	E	3i	Po	At	Rn
87	88	8	19	104	10	5 10	6	107	108	B 10	9	110		111	112	2 11	3	114	11	5	116	117	118
Fr	Ra	3	Ac	R	f D	b S	g	Bh	Н	s M	1t	Ds	S	Rg	С	n N	۱h	FI	N	1c	Lv	Ts	Og
	ſ	58	59)	60	61	62	2 (63	64	65	5	66	(67	68	69	9 7	70	7	1		
		Ce	e F	or	Nd	Pm	S	m	Eu	Gd	Т	b	D	у	Но	Er	Т	m	Yb	L	₋u		
	Ī	90	91		92	93	94	١ !	95	96	97	7	98	9	99	100	1(01	102	10	03		
		Th	า F	a	U	Np	F	u .	Am	Cm	Е	3k	C	f	Es	Fm	N	Лd	No		∟r		

Remember how electrons are distributed/electron configuration Remember the importance of valence electrons/the valence shell

Example Electron configurations

Sections 1.1 - 1.3

C electron config and # of valence e-'s?

 p^1 p^2 p^3 p^4 p^5 p^6

2 1 Н He 10 4 9 6 8 В C F Be Ν 0 Ne 12 14 13 15 16 17 18 3 Mg Αl Si Ρ S CI Na Ar 28 29 30 31 32 33 34 20 35 21 22 23 24 25 26 27 36 4 Sc Ti ٧ Fe Co Ni Cu Ga Ge As Se Br Kr Ca Cr Mn Zn 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 5 Rh Pd Sr Υ Zr Nb Mo Tc Ru Ag Cd In Sn Sb Te Xe 57 72 73 74 75 76 78 79 81 82 83 56 77 80 84 85 86 Ba La Hf Ta W Re Os lr Pt Au Hg ΤI Pb Bi Po Αt Rn 105 107 108 110 111 112 113 114 115 116 117 118 89 88 104 106 109 Rg Og Ra Ac Sg Bh Ds Cn Nh FI Mc Ts Rf Db Hs Mt Lv

Br electron config and # of valence e-'s?

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Се	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

1																	2
Н																	He
3	4											5	6	7	8	9	10
Li	Ве											В	С	N	0	F	Ne
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	Р	S	CI	Ar
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Υ	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ва	La	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
87	88	89	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Мс	Lv	Ts	Og

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Се	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

The Periodic Table Is Your Friend: Metals tend to gain and nonmetals tend to lose electrons

Review

1									2
Н									Не
3	4			5	6	7	8	9	10
Li	Ве			В	С	N	0	F	Ne
11	12			13	14	15	16	17	18
Na	Mg			Al	Si	Р	S	CI	Ar
19	20	2		31	32	33	34	35	36
K	Ca	1	١	Ga	Ge	As	Se	Br	Kr
37	38	3		49	50	51	52	53	54
Rb	Sr		t	In	Sn	Sb	Te	ı	Xe
55	56	5		81	82	83	84	85	86
Cs	Ва	ı	3	TI	Pb	Bi	Ро	At	Rn
87	88	8	_	113	114	115	116	117	118
Fr	Ra	,	1	Nh	FI	Мс	Lv	Ts	Og

Na $1s^2 2s^2 2p^6 3s^1$ F $1s^2 2s^2 2p^5$

I	58	68	69	70	71
	Сє	Er	Tm	Yb	L
Ī	90	100	101	102	10
	Th	Fm	Md	No	L

Why

Use the periodic table to determine electron configurations

Use the periodic table to determine the number of valence electrons

Use the periodic table to identify metals and non-metals

Use the periodic table to remember trends in size

Use the periodic table to remember trends in electronegativity

Use the periodic table to predict likely charges of ions

Use the periodic table to predict likely bond formation

Use trends in size, electron configuration, and nuclear charge to explain electronegativity trend

Introduce Valence Bond Theory (hybridization)

Different Ways of Representing Chemicals

1 H																	2 He
3	4											5	6	7	8	9	10
Li	Ве											В	С	N	0	F	Ne
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	Р	S	CI	Ar
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Υ	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ва	La	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
87	88	89	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Мс	Lv	Ts	Og

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Се	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

1																	2
Н																	Не
3	4											5	6	7	8	9	10
Li	Ве											В	С	N	0	F	Ne
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	Р	S	CI	A
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kı
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Υ	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ва	La	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rr
87	88	89	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Мс	Lv	Ts	O

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Се	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

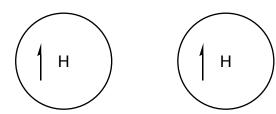
Remember periodic trends

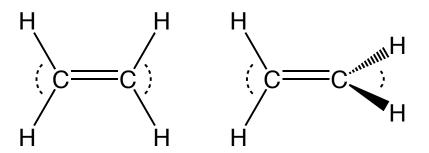
1																	2
Н																	He
3	4											5	6	7	8	9	10
Li	Ве											В	С	N	0	F	Ne
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	Р	S	CI	Ar
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Υ	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	ı	Xe
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ва	La	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
87	88	89	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Мс	Lv	Ts	Og

Remember periodic trends

Why does electronegativity or the size of the atom matter?

Review

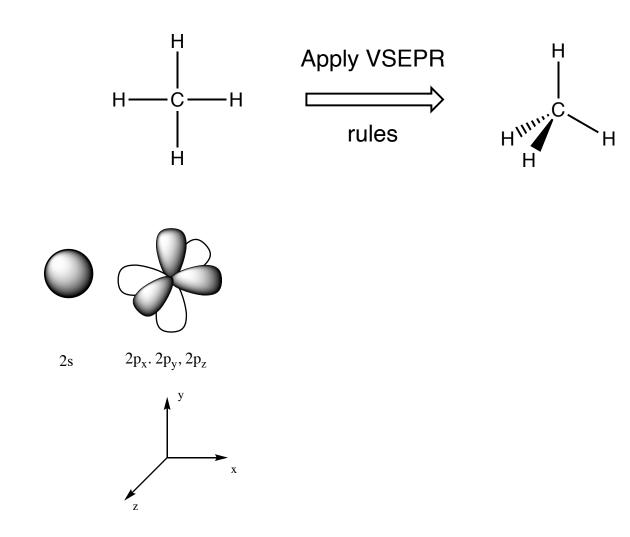

High energy electrons are reactive


low energy electrons are less reactive

	7														
1															2
Н			_												He
3	4					5		6		7		8		9	10
Li	Ве	9				E	3	C)	N	I	C)	F	Ne
11	12					13		14		15		16		17	18
Na	М	g				Α	J	S	i	F)	S	3	CI	Ar
19	20		2			31		32		33		34		35	36
K	С	a	{	1	n	G	a	G	е	Α	s	S	е	Br	Kr
37	38		3!			49		50		51		52		53	54
Rb	S	r			d	lr	1	S	n	S	b	Te	Э	ı	Xe
55	56		5			81		82		83		84		85	86
Cs	В	a	L	!	g	Т	1	Р	b	В	i	Р	0	At	Rn
87	88		8!	į	2	113	3	114	ļ	115	5	116	6	117	118
Fr	R	a	F		n	N	h	F	I	М	С	L	V	Ts	Og
	ĺ	58			68	1	69)	70)	71				
			Се			, Er		m		, ′b		u			
		90							-		-				
		ı yı	,		1(00	10)1	10	12	10)3			
			⁻ h			m	_	/ld		10		₋r			

Predict the number of electrons or bonds needed for an element to form a stable compound

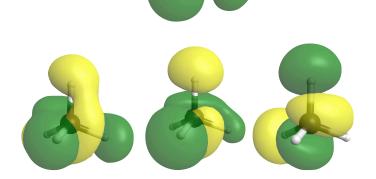
Н-----Н

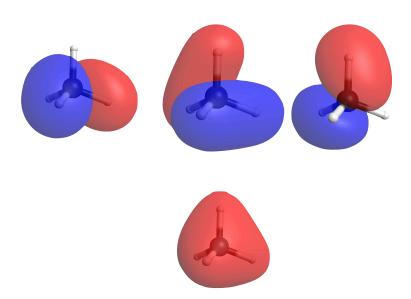


Which one? Both C atoms are trigonal planar

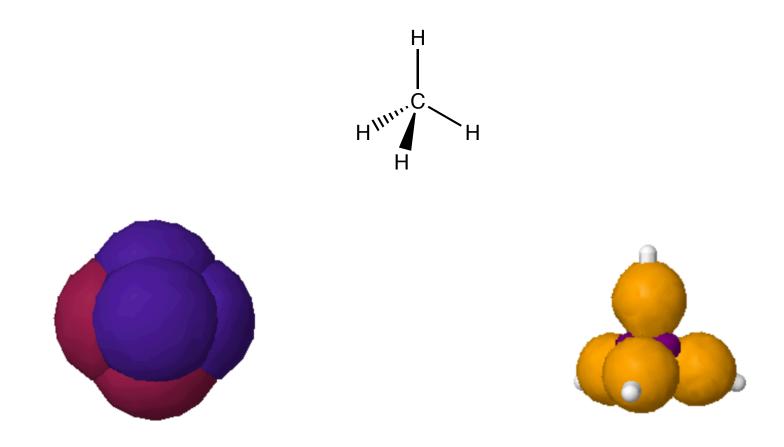
Why is there free rotation around C to C single bonds but not C to C double bonds?

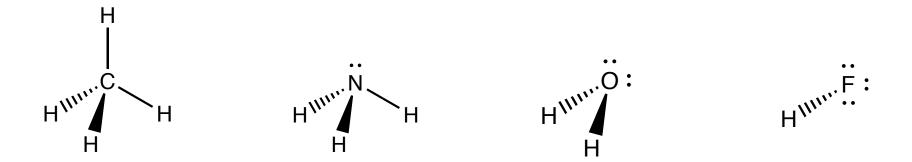
Which bond is stronger?


Explain observations and make predictions based on Valence Bond Theory


Just a Reminder that what I just said about orbitals being the "wrong" shape isn't

Section 1.11+


a problem in MO theory



one 2s orbital and three 2p orbitals from one C atom

four 1s orbitals from four H atoms

Identify atoms that use sp³ hybrid orbitals to form bonds and hold lone-pair electrons

- hybrid orbitals are used to form σ bonds and to hold lone-pair electrons
- in the valence bond model, single bonds are always σ bonds
- double and triple bonds are formed from σ bonds plus π bonds

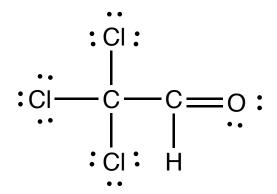
How to determine hybridization:

of hybrid orbitals needed = # of σ bonds + pairs of lone-pair electrons or

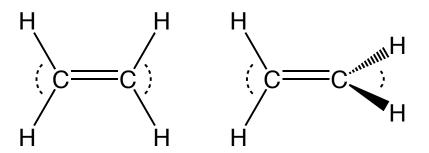
of hybrid orbitals needed = # number of directions electrons must be pointed in

count out the # of atomic orbitals need to make the hybrid orbitals starting with the 2s orbital (or 3s if appropriate)

name the hybrid orbitals spⁿ where n is the number of p orbitals used


$$CH_3^+$$

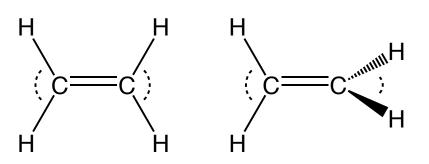
Practice: Determine the Hybridization of the Atoms in the Following Molecules


```
# of HO's Needed
# σ bonds + # pairs of lone-pair e-'s

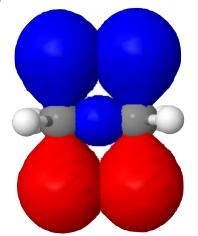
count out # of AO's needed
2s x 2p x etc

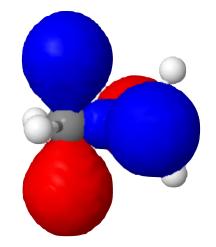
name the hybrids
sp³ made from one s and
three p orbitals
sp² made from one s and
two p orbitals
sp made from one s and
one p orbital
```


$$N \equiv C - CH_2 - NH_2$$



Which one? Both C atoms are trigonal planar


Why is there free rotation around C to C single bonds but not C to C double bonds?


Which bond is stronger?

Explain observations and make predictions based on the hybridization of an atom

Which one? Both C atoms are trigonal planar

Why is there free rotation around C to C single bonds but not C to C double bonds?

Explain observations and make predictions based on the hybridization of an atom

Which bond is strongest? 370 kJ/mol², 355±8 kJ/mol³

426 kJ/mol¹

490 kJ/mol⁴

$$H_3C$$
— CH_2 — CH_3

$$H_2C = CH - CH_3$$

$$HC \longrightarrow CH_3$$

² Organic Chemistry, 10th ed. McMurry.

³ Chem. Rev. **66**, 465 (1966).

⁴ J.Chem.Ed. **42**, 502 (1965)

Chemists use different drawings to place emphasis on different aspects of a molecule.

Representations are used to solve typographical issues.

Molecular Formulas as Compared to Condensed Structures/Structural Formulas

Section 1.12

In organic, molecular formulas are written C_xH_y (and other elements listed alphabetically)

For example:

 C_3H_8O

C₃H₇CIO

In organic, condensed structures typically start with a C, and everything immediately to the right of the C is connected to that first C. When the the first C is finally connected to the second C, now that atoms right of the second C are connected to second C. In acyclic unbranched molecules atoms to the right of the second C are not connected to the first C.

 C_3H_8O

CH₃CH₂OCH₃

CH₃CH₂CH₂OH

CH₃CHOHCH₃

In organic, condensed structures typically start with a C, and everything immediately to the right of the C is connected to that first C. When the first C is finally connected to the second C now that atoms right of the second C are connected to second C. In acyclic unbranched molecules, atoms to the right of the second C are not connected to the first C.

CH₂CHCH₃

Because bonds are not drawn, condensed structures require the reader to bring some chemical knowledge to their interpretation.

Condensed Structures/Structural Formulas: Using ()

Section 1.12

 $CH_3CH(OH)CH_2CH_3$ $CH_3(CH_2)_3CH_3$

CH₃CH₂CH(CH₃)₂

Parentheses () in structures are typically used to set off side chains, to indicate a repeating unit, or to indicate multiple groups of the same structure.

Often, chemists omit parentheses when they are not absolutely necessary,

$$\begin{array}{cccc} & \text{CH}_3\text{CHOHCH}_3 & \text{CH}_3\text{COCH}_2\text{CH}_3 \\ \text{CH}_3(\text{CH}_2)_3\text{CH}_3 & \text{CH}_3\text{C}(\text{O})\text{CH}_2\text{CH}_3 \\ & \text{CH}_3\text{CH}(\text{OH})\text{CH}_3 & \text{CH}_3\text{C}(\text{O})\text{CH}_2\text{CH}_3 \\ \end{array}$$

and sometimes chemists do things for aesthetic reasons.

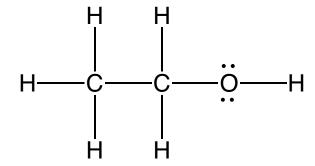
$$C(CH_3)_3OH$$

 $CH_3CHOHCH_2CH_3$

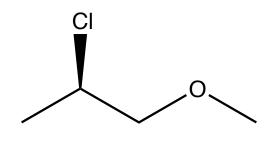
 $CH_3C(O)CH(CH_3)_2$

When a bond ends and the atom isn't labeled it is assumed to be C.

When there aren't enough bonds drawn to a C atom, the "missing" bonds are C atom to H atom bonds.


All other atoms are labeled.

Heptane CH₃CH₂CH₂CH₂CH₂CH₃


2-heptanol CH₃CHOH(CH₂)₄CH₃

Different structures serve different purposes, but they represent the same things

convert Lewis to skeletal

convert skeletal to condensed

convert structural formula to skeletal CH₃CH(OH)CH₂CH(CH₃)CH₂CH₃

convert skeletal to condensed

